Math 629, Spring 2019 - Homework 5.

Due Monday, March 4.

(Problems with an asterisk (*) are optional.)

- 0^* . Do as many of the exercises in Chapter 2.5¹ as you can.
- **1*.** Let $g \geq 0$ be an integrable function on \mathbb{R}^d . Let $U \subset \mathbb{R}^d$ be an open set. Define a function $f: \mathbb{R}^d \to \mathbb{R}$ by

$$f(x) = \int_{\mathbb{R}^d} g(y) \mathbf{1}_{x+U}(y) dy.$$

- (a) Prove that f is lower semi-continuous (that is, $\liminf_{x\to x_0} f(x) \ge f(x_0)$ for all $x \in \mathbb{R}^d$).
- (b) Is f necessarily upper semi-continuous (that is, $\limsup_{x\to x_0} f(x) \leq f(x_0)$ for all $x \in \mathbb{R}^d$)? (Proof or counterexample.)
- (c) Does the conclusion in (a) still hold if we only assume that U is measurable, rather than open? (Proof or counterexample.)
- **2.** Construct an integrable function $f: \mathbb{R} \to [0, \infty)$ such that f is unbounded on every open interval.

Hint: What is the easiest unbounded integrable function you can think of? Can you go from there to make an integrable function that blows up whenever approaching a rational number?

- **3.** Let $f \in L^p(\mathbb{R}^d)$ for some $1 \leq p < \infty$. Prove that for every $\lambda > 0$ we have $m(\{x \in \mathbb{R}^d : |f(x)| > \lambda\})^{1/p} \leq \lambda^{-1} ||f||_p$.
- **4.** Let $1 \leq p < \infty$. Let $(f_n)_n$ be a sequence in $L^p(\mathbb{R}^d)$ that converges to some $f \in L^p(\mathbb{R}^d)$ (in L^p -norm).
- (a) Prove that for every $\varepsilon > 0$ we have

$$\lim_{n \to \infty} m(\{x \in \mathbb{R}^d : |f_n(x) - f(x)| > \varepsilon\}) = 0.$$

- (b) Construct a sequence $(f_n)_n$ convergent in $L^p(\mathbb{R}^d)$ such that $\lim_{n\to\infty} f_n(x)$ does not exist for a.e. $x\in\mathbb{R}^d$.
- **5*.** Let $f:[a,b]\to\mathbb{R}$ be a Riemann integrable function. Prove that f is Lebesgue integrable on [a,b] and that the Riemann integral of f is equal to the Lebesgue integral of f.

Hint: First try this yourself and if necessary, refer to Ch. 2, Thm. 1.5 in the book.

Turn the page.

Numbering refers to the textbook *Real Analysis* by E. M. Stein and R. Shakarchi.

²Here you may define Riemann integrals via Riemann sums or upper and lower sums, whichever you prefer.

Honors problem 3. Let X be a set, $\mathcal{Q} \subset \mathcal{P}(X)$, $\mu_0 : \mathcal{Q} \to [0, \infty)$ and $\mu : \mathcal{P}(X) \to [0, \infty]$ the outer measure generated by μ_0 (see Homework 3). We call a set $E \subset X$ Carathéodory measurable (with respect to μ) if for every $Q \in \mathcal{Q}$ we have

$$\mu(Q) = \mu(Q \cap E) + \mu(Q \cap E^c).$$

- (a) Let $\Sigma_{\rm C}$ denote the set of Carathéodory measurable sets. Show that $\Sigma_{\rm C}$ is a σ -algebra.
- (One can also show that the restriction $\mu|_{\Sigma_{\mathbf{C}}}$ is a *measure*; i.e. countably additive, see Thm. 1.1 in Ch. 6.)
- (b) Let $X = \mathbb{R}^d$ and let \mathcal{Q} denote the collection of closed cubes in \mathbb{R}^d and set $\mu_0(Q) = |Q|$ for all $Q \in \mathcal{Q}$ (where |Q| denotes the volume of the cube Q). Prove that $E \subset \mathbb{R}^d$ is Carathéodory measurable if and only if it is Lebesgue measurable (as defined in the lecture).
- (c) Let $X = \mathbb{R} \times (0, \infty)$ denote the upper half-plane and let \mathcal{Q} be the set of all *tents* which we define as sets $T = T(x, s) \subset X$ of the form

$$T(x,s) = \{(y,t) \in X : t < s, |x - y| < s - t\}$$

for some $(x, s) \in X$. Let $\mu_0(T(x, s)) = s$. Prove that $\Sigma_C = \{\emptyset, X\}$ and that $\mu(T) = \mu_0(T)$ for all tents T.