Math 629, Spring 2019 - Homework 7.

Due Monday, March 25.

(Problems with an asterisk (*) are optional.)

1. Suppose that $f \in L^1(\mathbb{R}^d)$ and $\lambda_1, \ldots, \lambda_d > 0$. Define

$$g(x) = f(\lambda_1^{-1}x_1, \dots, \lambda_d^{-1}x_d)$$

Show that $g \in L^1(\mathbb{R}^d)$ and that

$$\int g = \left(\prod_{j=1}^{d} \lambda_j\right) \int f.$$

2. Let $f, g \in L^1(\mathbb{R}^d)$. The *convolution* of f and g is the function f * g defined by

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y)dy$$

(a) Show that (f * g)(x) is well-defined for a.e. $x \in \mathbb{R}^d$. That is, show that for a.e. $x \in \mathbb{R}^d$, the function $y \mapsto f(x-y)g(y)$ is integrable (in particular, show that it is measurable).

(b) Verify that the following properties hold for every $f, g, h \in L^1(\mathbb{R}^d)$:

$$f * g = g * f$$
, $(f * g) * h = f * (g * h)$,
 $||f * q||_1 < ||f||_1 ||g||_1$

(c) Show that there does not exist a function $\delta \in L^1(\mathbb{R}^d)$ such that

$$f * \delta = f$$
 for all $f \in L^1(\mathbb{R}^d)$

(d*) Let $E_1, E_2 \subset \mathbb{R}^d$ be measurable and $m(E_1) > 0, m(E_2) > 0$. Show that $E_1 + E_2$ contains an open ball. *Hint:* Consider the function $\mathbf{1}_{E_1} * \mathbf{1}_{E_2}$.

3. Let $f \in L^1(\mathbb{R}^d)$. Define the Fourier transform of f by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi ix\cdot\xi} dx \quad (\xi \in \mathbb{R}^d)$$

(Here $x \cdot \xi = \sum_{i=1}^{d} x_i \xi_i$.) Observe that $\widehat{f}(\xi)$ is well-defined, since $|e^{-2\pi i x \cdot \xi}| = 1$ for every $x, \xi \in \mathbb{R}^d$, so $x \mapsto f(x)e^{-2\pi i x \cdot \xi}$ is integrable for every $\xi \in \mathbb{R}^d$.

(a) Show that $\widehat{f}: \mathbb{R}^d \to \mathbb{C}$ is a continuous function and $\|\widehat{f}\|_{\infty} \leq \|f\|_1$.

(b) Show that for every $f, g \in L^1(\mathbb{R}^d)$ we have

$$\widehat{f * q} = \widehat{f} \cdot \widehat{q}.$$

(Turn the page.)

3 (continued). (c) Define translation of f by $T_y f(x) = f(x - y)$ for $y \in \mathbb{R}^d$, modulation of f by $M_{\xi}f(x) = e^{2\pi i x \cdot \xi}f(x)$ for $\xi \in \mathbb{R}^d$ and dilation of f by $D_{\delta}^p f(x) = \delta^{\frac{d}{p}} f(\delta x)$ for $\delta > 0$ and $p \in [1, \infty]$. Prove the following properties:

 $\widehat{T_y f} = M_{-y} \widehat{f}, \quad \widehat{M_\xi f} = T_\xi \widehat{f}, \quad \widehat{D_\delta^p f} = D_{\delta^{-1}}^{p'} \widehat{f}$

(Here $\frac{1}{p} + \frac{1}{p'} = 1$.)

(d) Let $g(x) = e^{-\pi |x|^2}$. Prove that $g \in L^1(\mathbb{R}^d)$ and $\widehat{g} = g$. *Hint:* First prove it for d = 1 and then use Fubini.

4. Let $f \in L^p(\mathbb{R}^d)$ for $p \in [1, \infty)$. Show that

$$||f||_p = \left(\int_0^\infty p\lambda^{p-1} m(\{|f| > \lambda\}) d\lambda\right)^{1/p}.$$

5*. Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function and $g \in L^1(\mathbb{R}^d)$ real-valued. Let $E \subset \mathbb{R}^d$ measurable with m(E) = 1. Prove that

$$f\Big(\int_E g\Big) \le \int_E f \circ g$$

Honors problem 4. Let $E \subset \mathbb{R}^d$ be a measurable set with m(E) =1. Suppose that $(f_k)_{k\in\mathbb{N}}$ is a sequence of integrable real-valued functions supported on E such that for all $k, \ell \in \mathbb{N}$ and $\lambda, \lambda' \in \mathbb{R}$ we have

- (1) $m(\{f_k > \lambda\}) = m(\{f_\ell > \lambda\})$ (2) $m(\{f_k > \lambda, f_\ell > \lambda'\}) = m(\{f_k > \lambda\})m(\{f_\ell > \lambda'\})$
- (3) $\int f_k = 0$ (4) $||f_k||_2 = 1$

For $n \in \mathbb{N}$ define the function

$$A_n = \frac{1}{n} \sum_{k=1}^n f_k.$$

Show that for every $\varepsilon > 0$ we have

$$\lim_{n \to \infty} m(\{|A_n| > \varepsilon\}) = 0.$$

Hint: First show that $\int f_k f_\ell = 0$ for every $k, \ell \in \mathbb{N}$. Then compute $||A_n||_2$ and use Chebyshev's inequality (see Homework sheet 5).