Math 629, Spring 2019 - Homework 9.

Due Monday, April 8.

(Problems with an asterisk (*) are optional.)

- **1.** Let $K \in L^1(\mathbb{R}^d)$ be bounded and supported on a bounded set with $\int K = 1$. Define $K_{\delta}(x) = \delta^{-d}K(\delta^{-1}x)$ for every $\delta > 0$. Show that $(K_{\delta})_{\delta}$ is an approximation of identity in the sense defined in the lecture.
- **2.** Suppose that $(K_{\delta})_{\delta>0}$ is a family of integrable functions such that there exists a constant $C \in (0, \infty)$ such that $\int K_{\delta} = 1$, $\int |K_{\delta}| \leq C$ for every $\delta > 0$ and for every $\varepsilon > 0$ we have

$$\lim_{\delta \to 0+} \int_{|x| \ge \varepsilon} |K_{\delta}(x)| dx = 0.$$

Let $p \in [1, \infty)$. Prove that for every $f \in L^p(\mathbb{R}^d)$ we have $f * K_{\delta} \to f$ in $L^p(\mathbb{R}^d)$ as $\delta \to 0+$. Hint: Adapt the proof seen in the lecture.

- **3.** Let $E \subset \mathbb{R}$ be measurable with m(E) > 0. Does there exist a sequence $(s_n)_{n \in \mathbb{N}}$ such that the complement of $\bigcup_{n \in \mathbb{N}} (s_n + E)$ has measure zero? (Prove or disprove.)
- **4.** (i) Let $f \geq 0$ be a bounded function and $E \subset \mathbb{R}^d$ have finite measure. Prove that there exists R > 0 such that for all 0 < r < R we have

$$\int_{E} f \le 2 \int_{E} \left(\frac{1}{|B(x,r)|} \int_{B(x,r)} f \right) dx$$

(ii) Let $f \geq 0$, $R \geq 0$ and B_R a ball of radius R in \mathbb{R}^d . Show that for every 0 < r < R we have

$$\int_{B_R} f \le C \int_{B_R} \Big(\frac{1}{|B(x,r)|} \int_{B(x,r)} f \Big) dx,$$

where C is a constant only depending on d (but not on B_R and f) and $B(x,r) = \{y \in \mathbb{R}^d : |x-y| \le r\}.$

(Turn the page.)

Honors problem 5. In this exercise we introduce a variant of the Hardy-Littlewood maximal function and use it to give an alternative proof of the weak (1,1) bound for the Hardy-Littlewood maximal function. Fix a real number s. By \mathcal{D}_s we denote the collection of intervals of the form $[2^k(\ell + s), 2^k(\ell + s + 1))$ with $k, \ell \in \mathbb{Z}$. These are called *dyadic intervals* (with shift s). Observe that every two dyadic intervals $I, J \subset \mathcal{D}_s$ have the property that they are either disjoint or contained in each other. Given $f \in L^1(\mathbb{R}^d)$, define the *dyadic maximal function*

$$M_s f(x) = \sup_{I \in \mathcal{D}_s, x \in I} \frac{1}{|I|} \int_I |f| \quad (x \in \mathbb{R})$$

- (i) Show that for every $\lambda > 0$, the set $\{M_0 f > \lambda\} \subset \mathbb{R}$ can be written as a union over pairwise disjoint dyadic intervals in \mathcal{D}_0 .
- (ii) Prove that there exists a constant C > 0 such that for every $\lambda > 0$ and every $f \in L^1(\mathbb{R})$ we have¹

$$|\{M_0 f > \lambda\}| \le C\lambda^{-1} ||f||_1.$$

- (iii) Observe that (ii) also holds with M_s in place of M_0 for every $s \in \mathbb{R}$.
- (iv) Show that there exists a constant c > 0 such that for every interval $I \subset \mathbb{R}$ there exists an interval $J \in \mathcal{D}_0 \cup \mathcal{D}_{1/3} \cup \mathcal{D}_{2/3}$ such that $I \subset J$ and $|J| \leq c|I|$.
- (v) Let M denote the Hardy-Littlewood maximal function as defined in the lecture. Show that there exists c > 0 such that

$$Mf \le c(M_0f + M_{1/3}f + M_{2/3}f)$$

In particular, $m(\{Mf > \lambda\}) \le c'\lambda^{-1}||f||_1$ for every $\lambda > 0$.

¹You are not allowed to use the weak (1,1) bound for the Hardy-Littlewood maximal function seen in the lecture!