
Math 629, Spring 2019 – Homework 9.
Due Monday, April 8.

(Problems with an asterisk (*) are optional.)

1. Let K ∈ L1(Rd) be bounded and supported on a bounded set with∫
K = 1. Define Kδ(x) = δ−dK(δ−1x) for every δ > 0. Show that (Kδ)δ is

an approximation of identity in the sense defined in the lecture.

2. Suppose that (Kδ)δ>0 is a family of integrable functions such that
there exists a constant C ∈ (0,∞) such that

∫
Kδ = 1,

∫
|Kδ| ≤ C for every

δ > 0 and for every ε > 0 we have

lim
δ→0+

∫
|x|≥ε

|Kδ(x)|dx = 0.

Let p ∈ [1,∞). Prove that for every f ∈ Lp(Rd) we have f ∗ Kδ → f in
Lp(Rd) as δ → 0+. Hint: Adapt the proof seen in the lecture.

3. Let E ⊂ R be measurable with m(E) > 0. Does there exist a se-
quence (sn)n∈N such that the complement of

⋃
n∈N(sn + E) has measure

zero? (Prove or disprove.)

4. (i) Let f ≥ 0 be a bounded function and E ⊂ Rd have finite measure.
Prove that there exists R > 0 such that for all 0 < r < R we have∫

E
f ≤ 2

∫
E

( 1

|B(x, r)|

∫
B(x,r)

f
)
dx

(ii) Let f ≥ 0, R ≥ 0 and BR a ball of radius R in Rd. Show that for every
0 < r < R we have∫

BR

f ≤ C
∫
BR

( 1

|B(x, r)|

∫
B(x,r)

f
)
dx,

where C is a constant only depending on d (but not on BR and f) and
B(x, r) = {y ∈ Rd : |x− y| ≤ r}.

(Turn the page.)
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Honors problem 5. In this exercise we introduce a variant of the Hardy-
Littlewood maximal function and use it to give an alternative proof of the
weak (1,1) bound for the Hardy-Littlewood maximal function. Fix a real
number s. By Ds we denote the collection of intervals of the form [2k(` +
s), 2k(`+ s+ 1)) with k, ` ∈ Z. These are called dyadic intervals (with shift
s). Observe that every two dyadic intervals I, J ⊂ Ds have the property
that they are either disjoint or contained in each other. Given f ∈ L1(Rd),
define the dyadic maximal function

Msf(x) = sup
I∈Ds,x∈I

1

|I|

∫
I
|f | (x ∈ R)

(i) Show that for every λ > 0, the set {M0f > λ} ⊂ R can be written
as a union over pairwise disjoint dyadic intervals in D0.

(ii) Prove that there exists a constant C > 0 such that for every λ > 0
and every f ∈ L1(R) we have1

|{M0f > λ}| ≤ Cλ−1‖f‖1.
(iii) Observe that (ii) also holds with Ms in place of M0 for every s ∈ R.
(iv) Show that there exists a constant c > 0 such that for every interval

I ⊂ R there exists an interval J ∈ D0 ∪D1/3 ∪D2/3 such that I ⊂ J
and |J | ≤ c|I|.

(v) Let M denote the Hardy-Littlewood maximal function as defined in
the lecture. Show that there exists c > 0 such that

Mf ≤ c(M0f +M1/3f +M2/3f)

In particular, m({Mf > λ}) ≤ c′λ−1‖f‖1 for every λ > 0.

1You are not allowed to use the weak (1,1) bound for the Hardy-Littlewood maximal
function seen in the lecture!


