CS/Math 514, Fall 2019 – Numerical Analysis (Roos) Homework assignment 1.

Due Monday, September 16.

Problems with an asterisk (*) are optional.

- 1. (i) Implement a function simple(f,x0,N) that takes in a function f, a starting point x_0 and uses at most N iterations of the simple fixed point iteration $x_k = g(x_{k-1})$ where g(x) = f(x) + x to compute a solution to f(x) = 0. To test your program, compute the solution to $\cos(x) x = 0$ up to at least 6 significant decimal digits.
- (ii) Implement a function newton(f,fderiv,x0,N) that takes in a function f, its derivative f', a starting point x_0 and uses Newton's method with at most N iterations to compute a solution to f(x) = 0. To test your program, compute the (unique) solution to each of the following equations up to 6 significant decimal digits:

(1)
$$\cos(x) - x = 0$$
 (2) $e^{-x} - x^2 + 5 = 0$ (3) $e^x = \frac{10}{1 + 10x^2}$

- (iii) Compare these two methods for computing $\cos(x) x = 0$ as follows: for both of your implementations, simple and newton, plot the (negative) logarithmic error¹ in the kth iteration against k (with N = 100, say). Do this for each of the initial values $x_0 = 1, 4, 10, 100$. Explain the results in light of the theoretical results seen in class.
- (iv*) For each of the equations in (ii) plot the function f you used to solve it. Visualize the corresponding Newton iterates; for example by appropriately connecting the points $(x_k, 0)$, $(x_k, f(x_k))$ for $k = 0, 1, \ldots$ with line segments.

Practical hints: In (i), (ii) it makes sense to terminate computation once the solution no longer improves (i.e. difference between subsequent iterates is zero²). You may implement other parameters (such as target precision, verbosity settings etc.) as you see fit. In (iii), to avoid division-by-zero errors when computing $\log |x|$, it is reasonable to compute $\log(|x| + \epsilon)$ instead, where ϵ is the machine epsilon³ (e.g. in Python/NumPy one may use eps = np.finfo(np.double).eps).

2. Let $c \in (0,1)$ and define $g(x) = \frac{1}{2}(x^2 + c)$. The function g has two fixed points, $\xi_1 < 1$ and $\xi_2 > 1$. For each starting value $x_0 \in \mathbb{R}$, determine the limiting behavior of the fixed point iteration $x_{k+1} = g(x_k)$. That is, prove or disprove existence of the limit $\lim_{k \to \infty} x_k$ and if it exists, determine its value. *Hint:* Draw a picture or do numerical experiments to make conjectures and then prove them.

Turn the page.

¹Let ξ be the solution and x_k the kth iterate, then plot $-\log_{10}(|\xi - x_k|)$. This is roughly the number of correct decimal digits (up to rounding convention).

²Note this does not mean that the computed solution is exact!

³This is the smallest floating point number ϵ such that $1 \oplus \epsilon > 1$ (where \oplus is addition of floating point numbers).

3. Consider the equation

$$x + e^{-cx^2}\cos(x) = 0,$$

where c > 0 is a parameter.

- (i) Prove that the equation has a unique solution $x \in \mathbb{R}$ for every c > 0.
- (ii) Use Newton's method to compute the (unique) solution to the equation for each of the values c = 1, 10, 100 up to at least 6 significant decimal digits. (Try different values for x_0 , including $x_0 = 0$.)
- (iii) Describe and explain what happened when you tried $x_0 = 0$ in (ii).

4. Let a > 0. Consider the iteration

$$x_{k+1} = \frac{1}{2}(x_k + \frac{a}{x_k})$$

with $x_0 > 0$.

(i) Prove that $\xi = \lim_{k \to \infty} x_k$ exists and determine its value.

Hint: Show that the sequence $(x_k)_{k\geq 1}$ is decreasing and bounded.

(ii) Show that $(x_k)_k$ converges at least quadratically.

Hint: Find a recursive formula for the error $e_k = x_k - \xi$.

5*.

- (i) As in Problem 1 above, implement the secant method as a function secant(f, x0, x1, N) and solve the equations given in Problem 1 (ii).
- (ii) Similarly, implement the bisection method as a function bisect(f, a, b, N).
- (iii) Create plots as in Problem 1 (iii), (iv) to compare the Newton, secant and bisection methods. Experiment with different equations and starting points.