
Math 522, Fall 2019 – Analysis II (Roos)
Homework assignment 1. Due Monday, September 16.

Problems with an asterisk (*) are optional.

1. Prove or disprove convergence for each of the following series (a and b
are real parameters and convergence may depend on their values).
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2. Prove or disprove convergence for each of the following sequences and
in case of convergence, determine the limit:
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3. For each of the following series, determine whether it converges uni-
formly on R and determine whether it converges uniformly on each closed
interval [a, b] ⊂ R:
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(Here bxc denotes the largest integer ≤ x.)

4. (i) Give an example of a sequence (fn)n of continuously differen-
tiable functions defined on R, uniformly convergent on R such that the limit
limn→∞ f ′n(x) does not exist for any value of x ∈ R.
(ii) Give an example of a sequence (fn)n of continuously differentiable func-
tions defined on R, uniformly convergent on R to some function f such that
f is not differentiable.
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