Math 522, Fall 2019 — Analysis IT (Roos)
Homework assignment 1. Due Monday, September 16.

Problems with an asterisk (*) are optional.

1. Prove or disprove convergence for each of the following series (a and b
are real parameters and convergence may depend on their values).
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2. Prove or disprove convergence for each of the following sequences and
in case of convergence, determine the limit:
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3. For each of the following series, determine whether it converges uni-
formly on R and determine whether it converges uniformly on each closed
interval [a,b] C R:
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(Here |x] denotes the largest integer < z.)

4. (i) Give an example of a sequence (f,), of continuously differen-
tiable functions defined on R, uniformly convergent on R such that the limit
limy, 00 f} (z) does not exist for any value of z € R.

(ii) Give an example of a sequence ( fy,), of continuously differentiable func-
tions defined on R, uniformly convergent on R to some function f such that
f is not differentiable.
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