Math 522, Fall 2019 – Analysis II (Roos) Homework assignment 1. Due Monday, September 16.

Problems with an asterisk (*) are optional.

1. Prove or disprove convergence for each of the following series $(a \text{ and } b are real parameters and convergence may depend on their values}).$

(i)
$$\sum_{n=2}^{\infty} \frac{1}{n^a \log(n)^b}$$
 (ii) $\sum_{n=3}^{\infty} (\log n)^{a \frac{\log n}{\log \log n}}$ (iii) $\sum_{n=1}^{\infty} \left(e^{1/n} - \frac{n+1}{n}\right)$
(iv) $\sum_{n=2}^{\infty} 2^{-(\log(n))^a}$ (v) $\sum_{n=1}^{\infty} \left(\sum_{k=0}^{10n} (-1)^k \frac{n^k}{k!}\right)$ (vi*) $\sum_{n=1}^{\infty} \frac{1}{n^2(1-\cos(n))}$

2. Prove or disprove convergence for each of the following sequences and in case of convergence, determine the limit:

(i)
$$a_0 = 1$$
, $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$
(ii) $b_n = n \sum_{k=0}^{\infty} \frac{1}{n^2 + k^2}$
(iii) $c_n = \sum_{k=n}^{n^2} \frac{1}{k}$
(iv) $d_n = \prod_{k=2}^{n} \frac{k^2 - 1}{k^2}$

3. For each of the following series, determine whether it converges uniformly on \mathbb{R} and determine whether it converges uniformly on each closed interval $[a, b] \subset \mathbb{R}$:

(i)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$ (iii) $\sum_{n=1}^{\infty} 2^{-n} \tan(\lfloor x \rfloor + 1/n)$

(Here $\lfloor x \rfloor$ denotes the largest integer $\leq x$.)

4. (i) Give an example of a sequence $(f_n)_n$ of continuously differentiable functions defined on \mathbb{R} , uniformly convergent on \mathbb{R} such that the limit $\lim_{n\to\infty} f'_n(x)$ does not exist for any value of $x \in \mathbb{R}$.

(ii) Give an example of a sequence $(f_n)_n$ of continuously differentiable functions defined on \mathbb{R} , uniformly convergent on \mathbb{R} to some function f such that f is not differentiable.

5*. Determine the value of the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)}$.