Math 522, Fall 2019 – Analysis II (Roos) Homework assignment 5. Due Monday, October 14.

(Problems with an asterisk (*) are optional.)

1. Recall the functions $r_n(x) = \operatorname{sgn}(\sin(2^n \pi x))$ from the previous homework sheet.

(i) Show that every r_n for $n \ge 1$ can be written as a finite linear combination of Haar functions and determine the coefficients of this linear combination. (ii) Show that the orthonormal system on [0, 1] given by $(r_n)_n$ is not complete.

2. Show that there exists no continuous 1-periodic function g such that f * g = f holds for all continuous 1-periodic functions f. (Here $(f * g)(x) = \int_0^1 f(x - y)g(y)dy$.)

3. Let f be the 1-periodic function such that f(x) = |x| for $x \in [-1/2, 1/2]$. Determine explicitly a sequence of trigonometric polynomials $(p_N)_N$ such that $p_N \to f$ uniformly as $N \to \infty$.

4. Let f, g be continuous, 1-periodic functions. Recall that for $n \in \mathbb{Z}$, the *n*th *Fourier coefficient* of f is defined by $\hat{f}(n) = \int_0^1 f(t) e^{-2\pi i t n} dt$.

(i) Show that $\widehat{f * g}(n) = \widehat{f}(n)\widehat{g}(n)$.

(ii) Show that $\widehat{f \cdot g}(n) = \sum_{m \in \mathbb{Z}} \widehat{f}(n-m)\widehat{g}(m)$.

(iii) If f is continuously differentiable, prove that $\hat{f}'(n) = 2\pi i n \hat{f}(n)$.

(iv) Let $y \in \mathbb{R}$ and set $f_y(x) = f(x+y)$. Show that $\widehat{f}_y(n) = e^{2\pi i n y} \widehat{f}(n)$.

(v) Let $m \in \mathbb{Z}$, $m \neq 0$ and set $f_m(x) = f(mx)$. Show that $\widehat{f_m}(n)$ equals $\widehat{f(\frac{n}{m})}$ if m divides n and zero otherwise.

5*. Let f be 1-periodic and k times continuously differentiable. Prove that there exists a constant c > 0 such that

$$|\hat{f}(n)| \le c|n|^{-k}$$
 for all $n \in \mathbb{Z}$.

Hint: What can you say about the Fourier coefficients of $f^{(k)}$?

Turn the page.

6*. Let f be 1-periodic and continuous. (i) Suppose that $\widehat{f}(n) = -\widehat{f}(-n) \ge 0$ holds for all $n \ge 0$. Prove that

$$\sum_{n=1}^{\infty} \frac{\widehat{f}(n)}{n} < \infty.$$

(ii) Show that there does not exist a 1-periodic continuous function f such that $\langle \rangle$

$$\widehat{f}(n) = \frac{\operatorname{sgn}(n)}{\log |n|} \quad \text{for all } |n| \ge 2.$$

Here $\operatorname{sgn}(n) = 1$ if n > 0 and $\operatorname{sgn}(n) = -1$ if n < 0.