Math 522, Fall 2019 – Analysis II (Roos) Homework assignment 7. Due Monday, November 4.

(Problems with an asterisk (*) are optional.)

1. Let X denote the vector space consisting of sequences of complex numbers $(a_n)_{n=1,2,\ldots}$ such that $\sum_{n=1}^{\infty} |a_n| < \infty$. We define $||a||_1 = \sum_{n=1}^{\infty} |a_n|$, $||a||_2 = (\sum_{n=1}^{\infty} |a_n|^2)^{1/2}$, $||a||_{\infty} = \sup_{n=1,2,\ldots} |a_n|$. Each of these three defines a norm on X. Prove that no two (different ones) of them are equivalent norms.

2. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be equivalent norms on a normed vector space X. (i) Show that a sequence $(x_n)_n \subset X$ converges with respect to $\|\cdot\|_1$ if and only if it converges with respect to $\|\cdot\|_2$.

(ii) Show that a set $U \subset X$ is open with respect to $\|\cdot\|_1$ if and only if it is open with respect to $\|\cdot\|_2$.

3. Let X be the set of continuously differentiable functions on [0, 1] and Y the set of continuous functions on [0, 1]. We consider X and Y as normed vector spaces with the norm $||f|| = \sup_{x \in [0,1]} |f(x)|$. Define a linear map $T: X \to Y$ by Tf = f'. Show that T is not bounded.

4. Let $A \in \mathbb{R}^{m \times n}$. For $x \in \mathbb{R}^n$ we define $||x||_1 = \sum_{i=1}^n |x_i|$. (i) Determine the value of $||A||_{1 \to 1} = \sup_{||x||_1=1} ||Ax||_1$ (that is, find a formula for $||A||_{1 \to 1}$ involving only finitely many computations in terms of the entries of A).

(ii) Do the same for
$$||A||_{1\to\infty} = \sup_{||x||_1=1} ||Ax||_{\infty}$$
 and $||A||_{\infty\to 1} = \sup_{||x||_{\infty}=1} ||Ax||_1$

5. Let $\mathbb{R}^{n \times n}$ denote the space of real $n \times n$ matrices equipped with the matrix norm $||A|| = \sup_{||x||=1} ||Ax||$. Define

$$F: \mathbb{R}^{n \times n} \longrightarrow \mathbb{R}^{n \times n}, A \longmapsto A^2.$$

Show that F is Fréchet differentiable and compute $DF|_A$.

6*. Let X = C([0,1]) be the Banach space of continuous functions on [0,1] (with the supremum norm) and define a map $F: X \to X$ by

$$F(f)(s) = \int_0^s \cos(f(t)^2) dt, \ s \in [0, 1].$$

(i) Show that F is Fréchet differentiable and compute the Fréchet derivative $DF|_f$ for each $f \in X$.

(ii) Show that $FX = \{F(f) : f \in X\} \subset X$ is relatively compact.

(

7*. Let $A \in \mathbb{R}^{n \times n}$. Define $||x||_2 = (\sum_{i=1}^n |x_i|^2)^{1/2}$ (Euclidean norm) and $||A||_{2\to 2} = \sup_{||x||_2=1} ||Ax||_2$. Observe that AA^T is a symmetric $n \times n$ matrix and hence has only non-negative eigenvalues. Denote the largest eigenvalue of AA^T by ρ . Prove that $||A||_{2\to 2} = \sqrt{\rho}$. *Hint:* First consider the case that A is symmetric. Use that symmetric matrices are orthogonally diagonalizable.