Math 629, Spring 2020 (Roos) – Homework 1. Due Monday, February 10.

(Problems with an asterisk (*) are optional; problems with two asterisks (**) are optional and may be more challenging.)

1. Define two outer measures on \mathbb{R} as follows: for $E \subset \mathbb{R}$,

$$\mu_*^o(E) = \inf \Big\{ \sum_{i=1}^{\infty} |I_i| : \bigcup_{i=1}^{\infty} I_i \supset E, I_i \text{ open intervals} \Big\},$$

$$\mu_*^c(E) = \inf \Big\{ \sum_{i=1}^{\infty} |I_i| : \bigcup_{i=1}^{\infty} I_i \supset E, I_i \text{ closed intervals} \Big\}.$$

Prove that $\mu_*^o(E) = \mu_*^c(E)$ for every $E \subset \mathbb{R}$.

2. For every bounded set $E \subset \mathbb{R}$ define

$$j_*(E) = \inf \Big\{ \sum_{i=1}^N |I_i| : N \in \mathbb{N}, \bigcup_{i=1}^N I_i \supset E, I_i \text{ open intervals} \Big\}.$$

- (i) Prove that $j_*(E) = j_*(\overline{E})$ for every $E \subset \mathbb{R}$, where $\overline{E} \subset \mathbb{R}$ denotes the closure of E.
- (ii) Determine a set $E \subset \mathbb{R}$ such that $j_*(E) > \mu_*^o(E)$ (with μ_*^o defined as above).
- **3*.** A box in \mathbb{R}^n is a Cartesian product of n bounded intervals (each may be open, closed or half-open). If B is a box, then we denote its volume by |B|, defined as the product of the lengths of constituent intervals. Define $A \subset \mathcal{P}(\mathbb{R}^n)$ as the collection of all subsets of \mathbb{R}^n that arise by taking a finite number of unions and intersections of boxes.
- (i) Prove that for every $A \in \mathcal{A}$ there exist finitely many pairwise disjoint boxes B_1, \ldots, B_N such that

$$A = \bigcup_{i=1}^{N} B_i.$$

We define $\mu_0(A) = \sum_{i=1}^N |B_i|$.

- (ii) Prove that $\mu_0(A)$ is well-defined (that is, independent of the chosen box decomposition of A).
 - (iii) Prove that

$$\mu_0\big(\bigcup_{i=1}^{\infty} A_i\big) = \sum_{i=1}^{\infty} \mu_0(A_i)$$

holds whenever $A_i \in \mathcal{A}$ for all $i = 1, \ldots$ are pairwise disjoint and in addition $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

Remark. If we make A larger by also allowing set complements, (i)–(iii) continue to hold as long as we also allow unbounded boxes.

4*. In this exercise we will prove that there does not exist a measure on \mathbb{R} that is defined on all subsets of \mathbb{R} and is consistent with our intuitive notion of 'length'.

Define an equivalence relation on \mathbb{R} by saying that $x \sim y$ if x - y is rational. Let $V \subset [0,1]$ be such that V contains exactly one element of each equivalence class with respect to \sim . In other words, for every $r \in \mathbb{R}$ there exists a unique $v \in V$ such that v - r is rational. (We will take the existence of such a V for granted; it follows from the axiom of choice.)

(i) Prove that

$$[0,1] \subset \bigcup_{q \in \mathbb{Q} \cap [-1,1]} (V+q) \subset [-1,2]$$

(Here $V + q = \{v + q : v \in V\}.$)

- (ii) Prove that $(V+q)\cap (V+q')=\emptyset$ if q,q' are two distinct rational numbers.
- (iii) Show that there does not exist a measure $\mu : \mathcal{P}(\mathbb{R}) \to [0, \infty]$ (defined on all subsets of \mathbb{R}) satisfying $\mu(E+x) = \mu(E)$ for all $E \subset \mathbb{R}$, $x \in \mathbb{R}$ and $0 < \mu([0,1]) < \infty$.
 - **5**.** Let $U \subset \mathbb{R}^n$ be a bounded open set.
- (i) Prove that there exist countably many closed cubes Q_1, Q_2, \ldots with pairwise disjoint interiors such that

$$U = \bigcup_{i=1}^{\infty} Q_i$$

(ii) Show that there exist constants c, C > 0 only depending on n such that the cubes Q_1, Q_2, \ldots in (i) can be chosen such that

$$c \cdot \ell(Q_i) \le \operatorname{dist}(Q_i, \mathbb{R}^n \setminus U) \le C \cdot \ell(Q_i)$$

Here, by a *cube* Q we mean a Cartesian product of bounded intervals with equal length $\ell(Q)$. Moreover, $\operatorname{dist}(A, B) = \inf\{|a - b| : a \in A, b \in B\}$.