Math 629, Spring 2020 (Roos) - Homework 11.

Optional homework sheet – not graded.

- (*) asterisk denotes problems that may be more challenging.
- **1.** Let $\mathbb{E}_k f = \sum_{I \in \mathcal{D}, |I| = 2^k} (|I|^{-1} \int_I f) \mathbf{1}_I$ denote the dyadic martingale operators from Homework 10. Prove that for all $k, \ell \in \mathbb{Z}$ and non-negative measurable functions f,

$$\int_0^1 f(x) \mathbb{E}_k f(x) \mathbb{E}_{\ell} f(x) dx \ge c \left(\int_0^1 f(x) dx \right)^3,$$

where $c \in (0, \infty)$ is a constant independent of f, k, ℓ .

- **2.** Let \mathcal{H} be a Hilbert space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.
- (i) Let $\ell: \mathcal{H} \to \mathbb{K}$ be a bounded linear map. Then there exists a unique $g \in \mathcal{H}$ such that $\ell(f,g) = \langle f,g \rangle$ for all $f \in \mathcal{H}$. Hint: Consider the closed subspace $\ker \ell$ and use orthogonal projection.
- (ii) Let $T: \mathcal{H} \to \mathcal{H}$ be a bounded linear map. Show that there exists a unique bounded linear map $T^*: \mathcal{H} \to \mathcal{H}$ (called the *adjoint* of T) such that $\langle Tf, g \rangle = \langle f, T^*g \rangle$ for all $f, g \in \mathcal{H}$ and $||T|| = ||T^*||$. Hint: Use (i).
- **3.** Let \mathcal{H} be a Hilbert space and $\{e_n : n = 0, 1, ...\} \subset \mathcal{H}$ a complete orthonormal system. Let $\{\lambda_n : n = 0, 1, ...\} \subset \mathbb{K}$ be a given bounded sequence of scalars. Define a linear map $T : \mathcal{H} \to \mathcal{H}$ by $Tf = \sum_{n=0}^{\infty} \lambda_n \langle f, e_n \rangle e_n$.
- (i) Prove that Tf is well-defined as an element of \mathcal{H} (that is, verify that the infinite series defining Tf converges in \mathcal{H}).
- (ii) Prove that T is a bounded linear operator with operator norm $||T|| = \sup_{f \in \mathcal{H}, f \neq 0} ||Tf|| / ||f||$ given by $||T|| = \sup_n |\lambda_n|$.
- (iii) Show that T is an orthogonal projection if and only if $\lambda_n \in \{0, 1\}$ for all $n = 0, 1, \ldots$
 - (iv) Show that the adjoint of T^* is given by $T^*f = \sum_{n=0}^{\infty} \overline{\lambda_n} \langle f, e_n \rangle e_n$.
- **4.** Let X = (0,1] with the measure $\mu(E) = (\log 2)^{-1} \int_E \frac{1}{1+x} dx$ defined on Lebesgue measurable sets $E \subset X$.
- (i) Show that the map $T: X \to X$ defined by $T(x) = \frac{1}{x} \mod 1$ is a measure-preserving transformation with respect to μ .
 - (ii *) Show that T is ergodic.