Math 629, Spring 2020 (Roos) – Homework 2. Due Monday, February 17.

(Problems with an asterisk (*) are optional; problems with two asterisks (**) are optional and may be more challenging.)

- **1.** Let X be a non-empty set, $\mathcal{A} \subset \mathcal{P}(X)$ an algebra, $\mu_0 : \mathcal{A} \to [0, \infty]$ a premeasure and $\mu_*: \mathcal{P}(X) \to [0, \infty]$ the outer measure induced by μ_0 . Denote by A_{σ} the collection of sets that arise as countable unions of sets in \mathcal{A} and $\mathcal{A}_{\sigma\delta}$ the collection of sets that arise as countable intersections of sets in \mathcal{A}_{σ} .
- (i) Prove that for every $E \subset X$ there exists $F \in A_{\sigma\delta}$ such that $E \subset F$ and $\mu_*(E) = \mu_*(F)$.
- (ii) Prove that for every Carathéodory measurable set E there exist $F \in A_{\sigma\delta}$ and $N \subset X$ with $\mu_*(N) = 0$ such that $E = F\Delta N$. (where Δ is symmetric set difference: $F\Delta N = (F - N) \cup (N - F)$
- **2.** Let μ_* denote the outer measure on \mathbb{R}^n defined via boxes as seen in the lecture (also known as Lebesgue outer measure). Show that $E \subset \mathbb{R}^n$ is Carathéodory measurable if and only if for every $\varepsilon > 0$ there exists an open set $U \subset \mathbb{R}^n$ such that $E \subset U$ and $\mu_*(U \cap E^c) \leq \varepsilon$.
- 3. (i) Show that every $x \in [0,1]$ may be written in the form x = $\sum_{k=1}^{\infty} a_k 3^{-k} \text{ with } a_k \in \{0, 1, 2\} \text{ for all } k.$
- (ii) Define a set $C \subset [0,1]$ by letting $x \in C$ if and only if x has a representation as in (i) with $a_k \in \{0,2\}$ for all k. Show that C has Lebesgue measure zero.
- **4.** Let $C \subset [0,1]$ be the set from Problem 3. Define a map $f: C \to [0,1]$ by letting $f(x) = \sum_{k=1}^{\infty} (a_k/2)2^{-k}$ where $x = \sum_{k=1}^{\infty} a_k 3^{-k}$, $a_k \in \{0, 2\}$. (i) Show that f is well-defined (independent of the chosen representation
- of x and maps into [0,1]).
 - (ii) Show that f is continuous.
- (iii) Show that f is surjective: for every $y \in [0,1]$ exists $x \in C$ so that f(x) = y.
 - (iv) Show that f can be extended to a continuous function on [0,1].

(Turn the page.)

- **5*.** Show that there exist sets $A, B \subset \mathbb{R}$ with Lebesgue measure zero such that $A + B = \{a + b : a \in A, b \in B\}$ has positive Lebesgue measure. *Hint:* Recall the set C from Problem 3.
- **6**.** Let $C \subset [0,1]$ be the set from Problem 3. Show that there exists a set $D \subset C$ such that D is not a Borel set. (However, note that D must be Lebesgue measurable since it has outer measure zero.)
- **7**.** Let $X = \mathbb{R} \times (0, \infty)$ denote the upper half-plane and let \mathcal{T} be the set of all *tents* which we define as sets $T = T(x, s) \subset X$ of the form

$$T(x,s) = \{ (y,t) \in X : t < s, |x-y| < s-t \}$$

for some $(x,s) \in X$. For every $E \subset X$ define an outer measure by

$$\mu_*(E) = \inf \Big\{ \sum_{i=1}^{\infty} s_i : \bigcup_{i=1}^{\infty} T(x_i, s_i) \supset E \Big\}.$$

- (i) Let $E \subseteq X$ be a non-empty set. Show that E is not Carathéodory measurable with respect to μ_* .
 - (ii) Show that $\mu_*(T(x,s)) = s$ for every $(x,s) \in X$.