Math 629, Spring 2020 (Roos) – Homework 3.

Due Monday, February 24.

(Problems with an asterisk (*) are optional; problems with two asterisks (**) are optional and may be more challenging.)

1. Let (X, Σ, μ) be a measure space and $(E_k)_{k=1,\dots}$ a sequence of sets in Σ . Assume that $\sum_{k=1}^{\infty} \mu(E_k) < \infty$. Define

 $E = \{x \in X : x \text{ is contained in infinitely many of the } E_k\}.$

Show that $E \in \Sigma$ and that $\mu(E) = 0$.

- **2.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such that the function $x \mapsto f(x,y)$ is continuous for every $y \in \mathbb{R}$ and the function $y \mapsto f(x,y)$ is continuous for every $x \in \mathbb{R}$. Show that f is measurable (with respect to Lebesgue measure on \mathbb{R}^2).
- **3.** Define the subset $A \subset \mathbb{R}$ as follows: $x \in A$ if and only if there exists c > 0 such that

$$|x - j2^{-k}| \ge c2^{-k}$$

holds for all integers j and all integers $k \geq 0$. Determine the Lebesgue outer measure of A.

4*. Let (X, Σ, μ) be a measure space. Suppose that N, N' are nonnegative integers, $(a_k)_{k=1,\dots,N}, (a'_j)_{j=1,\dots,N'}$ real numbers and $(E_k)_{k=1,\dots,N}, (E'_j)_{j=1,\dots,N'}$ sets in Σ with finite μ -measure. Suppose that for every $x \in X$,

$$\sum_{k=1}^{N} a_k \mathbf{1}_{E_k}(x) = \sum_{i=1}^{N'} a'_j \mathbf{1}_{E'_j}(x).$$

Then

$$\sum_{k=1}^{N} a_k \mu(E_k) = \sum_{j=1}^{N'} a'_j \mu(E'_j).$$

(You are not allowed to integrate. Prove this directly from definitions.)

- **5**.** Let $E \subset \mathbb{R}^d$ be a Lebesgue measurable set with $\mu(E) < \infty$. Let $f: E \to \mathbb{R}$ be a measurable function (with respect to Lebesgue measurable sets).
- (i) Show that for every $\varepsilon > 0$ there exists $A_{\varepsilon} \subset E$ such that $\mu(E A_{\varepsilon}) \leq \varepsilon$ and the function $f|_{A_{\varepsilon}} : A_{\varepsilon} \to \mathbb{R}$ is continuous.
 - (ii) Show that A_{ε} can be chosen to be compact.

Note: Continuity of $f|_{A_{\varepsilon}}$ is (much) weaker than continuity of f on A_{ε} .