Math 629, Spring 2020 (Roos) – Homework 5.

Due Monday, March 9.

(Problems with an asterisk (*) are optional; problems with two asterisks (**) are optional and may be more challenging.)

- **1*.** Let $p \in [1, \infty]$. Show that there exists a function $f \in L^p(\mathbb{R}^d)$ such that $f \notin L^q(\mathbb{R}^d)$ for all $q \in [1, \infty], p \neq q$.
 - **2.** Let (X, Σ, μ) be a σ -finite measure space.
- (a) Suppose that $\mu(X) < \infty$. Then $L^p(\mu) \subset L^q(\mu)$ for all $1 \le q \le p \le \infty$.
- (b) Suppose that there exists c > 0 such that if $\mu(E) < c$, then $\mu(E) = 0$. Then $L^p(\mu) \subset L^q(\mu)$ for all $1 \le p \le q \le \infty$.
 - **3.** Suppose that $f \in L^1(\mathbb{R}^d)$ and $\lambda_1, \ldots, \lambda_d > 0$. Define

$$g(x) = f(\lambda_1^{-1}x_1, \dots, \lambda_d^{-1}x_d).$$

Show that $g \in L^1(\mathbb{R}^d)$ and that

$$\int g = \left(\prod_{j=1}^d \lambda_j\right) \int f.$$

4. Let $f \in L^p(\mu)$ for some $1 \leq p < \infty$. Prove that for every $\lambda > 0$ we have

$$\mu(\lbrace x : |f(x)| > \lambda \rbrace)^{1/p} \le \lambda^{-1} ||f||_p.$$

- **5.** Let $1 \leq p < \infty$. Let $(f_n)_n$ be a sequence in $L^p(\mu)$ that converges to some $f \in L^p(\mu)$ (in L^p -norm).
 - (a) Prove that for every $\varepsilon > 0$ we have

$$\lim_{n \to \infty} \mu(\{x : |f_n(x) - f(x)| > \varepsilon\}) = 0.$$

(b) Construct a sequence $(f_n)_n$ convergent in $L^p(\mathbb{R}^d)$ such that $\lim_{n\to\infty} f_n(x)$ does not exist for a.e. $x\in\mathbb{R}^d$.