Math 629, Spring 2020 (Roos) - Homework 6.

Due Monday, March 23.

Important: Please submit your homework as a compressed pdf file (< 1 MB, scans of handwritten work are okay, use an appropriate app) online to jroos@math.wisc.edu with subject line Math 629 - Homework 6.

(Problems with an asterisk (*) are optional; problems with two asterisks (**) are optional and may be more challenging.)

1. Define for each $d \ge 1$,

$$c_d = \int_{\mathbb{R}^d} e^{-\pi|x|^2} dx \in (0, \infty).$$

- (a) Use polar coordinates to prove that $c_2 = 1$.
- (b) Use Fubini's theorem and (a) to prove that $c_d = 1$ for all $d \ge 1$.
- (c) Use polar coordinates and (b) to explicitly compute the Lebesgue measure of the unit ball $\{x \in \mathbb{R}^d : |x| \leq 1\}$ in \mathbb{R}^d for all $d \geq 2$. Express the result in terms of powers of π and the Γ -function

$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt \quad (s > 0)$$

Notes: Here $|x|=(\sum_{i=1}^d|x_i|^2)^{1/2}$. For the purpose of this exercise you may assume that π is defined as the Lebesgue measure of the set $\{x\in\mathbb{R}^2:|x|\leq 1\}$.

2. Let $f, g \in L^1(\mathbb{R}^d)$. The *convolution* of f and g is the function f * g defined by

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y)dy$$

- (a) Show that (f * g)(x) is well-defined for a.e. $x \in \mathbb{R}^d$. That is, show that for a.e. $x \in \mathbb{R}^d$, the function $y \mapsto f(x-y)g(y)$ is integrable (in particular, show that it is measurable).
- (b) Verify that the following properties hold for every $f, g, h \in L^1(\mathbb{R}^d)$:

$$f*g=g*f,\quad (f*g)*h=f*(g*h),$$

$$||f * g||_1 \le ||f||_1 ||g||_1$$

(c) Show that there does not exist a function $\delta \in L^1(\mathbb{R}^d)$ such that

$$f * \delta = f$$
 for all $f \in L^1(\mathbb{R}^d)$

3. Let $p \in [1, \infty)$ and $(f_n)_{n \in \mathbb{N}} \subset L^p(\mathbb{R}^d)$ such that $||f_n||_p \leq n^{-2}$ for all $n \in \mathbb{N}$. Does $(f_n)_{n \in \mathbb{N}}$ necessarily converge pointwise a.e. ? (Proof or counterexample.)

(Turn the page).

4. (a) Prove the inequality

$$\int_{\mathbb{R}^3} |f(x,y)g(y,z)h(z,x)| d(x,y,z) \le ||f||_2 ||g||_2 ||h||_2$$

for $f, g, h \in L^2(\mathbb{R}^2)$.

(b) Let $E \subset \mathbb{R}^3$ be a measurable set and suppose that the projections

$$E_1 = \{(y, z) : (x, y, z) \in E\},\$$

$$E_2 = \{(x, z) : (x, y, z) \in E\},\$$

$$E_3 = \{(x, y) : (x, y, z) \in E\}$$

are measurable subsets of \mathbb{R}^2 . Use (a) to derive an upper bound on the measure of E in terms of the measures of E_1, E_2, E_3 .

- **5**.** Let X be a metric space and μ a Borel measure on X. Let $C_c(X)$ denote the set of continuous functions on X that are supported in a compact set (i.e. $\{x: f(x) \neq 0\} \subset X$ is compact). The point of this exercise is to prove that $C_c(X)$ is dense in $L^p(\mu)$ for every $p \in [1, \infty)$.
- (a) Let $A \subset X$ be a closed set and $f: A \to \mathbb{C}$ a continuous function. Show that there exists a continuous function $f^{\sharp}: X \to \mathbb{C}$ such that $f^{\sharp}|_{A} = f$ and $\|f^{\sharp}\|_{\infty} = \|f\|_{\infty}$.

Hint: First use the metric to construct continuous functions that separate disjoint closed sets: given $A, B \subset X$ disjoint and closed there exists a continuous $g: X \to [0,1]$ such that g=0 on A and g=1 on B.

(b) Let $p \in [1, \infty)$ and $f \in L^p(\mu)$. Show that for every $\varepsilon > 0$ there exists $g \in C_c(X)$ such that $||f - g||_{L^p(\mu)} \le \varepsilon$.

Hint: First let p = 1. Use (a) and Lusin's theorem (see Homework 3, Exercise 5; the statement continues to hold in the metric space setting).

- (c) Show that $C_c(\mathbb{R})$ is not dense in $L^{\infty}(\mathbb{R})$.
- **6*.** A measure space is called *complete* if every subset of a nullset (a measurable set of measure zero) is measurable. Let (X, Σ, μ) be a measure space. We define its *completion* $(X, \overline{\Sigma}, \overline{\mu})$ as follows: $\overline{\Sigma}$ is the collection of all sets of the form $E \cup N$ where $E \in \Sigma$ and $N \subset F$ for some $F \in \Sigma$ with $\mu(F) = 0$. Define $\overline{\mu}(E \cup N) = \mu(E)$.
 - (i) Prove that $\overline{\Sigma}$ is a σ -algebra (called completion of Σ).
 - (ii) Prove that $\overline{\mu}$ is a measure.
- (iii) Prove that the Lebesgue σ -algebra on \mathbb{R}^d is the completion of the Borel σ -algebra.
- (iv) Let μ_d denote the Lebesgue measure on \mathbb{R}^d and Σ_d the Lebesgue σ -algebra on \mathbb{R}^d . Prove that the completion of the product measure space $(\mathbb{R}^{d_1}, \Sigma_{d_1}, \mu_{d_1}) \times (\mathbb{R}^{d_2}, \Sigma_{d_2}, \mu_{d_2})$ as defined in class coincides with $(\mathbb{R}^{d_1+d_2}, \Sigma_{d_1+d_2}, \mu_{d_1+d_2})$.