Math 629, Spring 2020 (Roos) – Homework 7. Due Monday, April 6.

Important: Please submit your homework as a compressed pdf file (< 1 MB, scans of handwritten work are okay, use an appropriate app) online to jroos@math.wisc.edu with subject line Math 629 - Homework 7.

(Problems with an asterisk (*) are optional; problems with two asterisks (**) are optional and may be more challenging.)

1. Let \mathcal{R} be a collection of measurable sets in \mathbb{R}^d with bounded eccentricity. That is, there exists $A \in (0, \infty)$ such that for every $R \in \mathcal{R}$ exists an open ball B such that $R \subset B$ and $\mu(B) \leq A\mu(R)$ (μ denotes Lebesgue measure). For measurable $f : \mathbb{R}^d \to \mathbb{C}$ define

(1)
$$M_{\mathcal{R}}f(x) = \sup_{x \in R \in \mathcal{R}} \frac{1}{\mu(R)} \int_{R} |f|.$$

Prove that there exists $C \in (0, \infty)$ such that for all $f \in L^1(\mathbb{R}^d)$,

(2)
$$\sup_{\lambda>0} \lambda \mu(\{M_{\mathcal{R}}f > \lambda\}) \le C \|f\|_{L^1(\mathbb{R}^d)}.$$

2. For $f \in L^1_{loc}(\mathbb{R})$, define the (centered) Hardy-Littlewood maximal function

$$Mf(x) = \sup_{r>0} \frac{1}{2r} \int_{-r}^r |f(x-t)| dt, \quad (x \in \mathbb{R})$$

- (a) Fix real numbers a < b. Compute $M\mathbf{1}_{[a,b]}$ explicitly.
- (b) Suppose that $Mf \in L^1(\mathbb{R})$ for some $f \in L^1_{loc}(\mathbb{R})$. Prove that f = 0 a.e.
- **3.** Let $E \subset [0,1]$ be measurable and $\alpha \in (0,1)$. Assume that for every interval $I \subset [0,1]$ we have $\mu(E \cap I) \geq \alpha \cdot \mu(I)$. Prove that $\mu(E) = 1$. (μ denotes Lebesgue measure.)
 - **4.** Let $f \in L^1_{loc}(\mathbb{R}^d)$. $x \in \mathbb{R}^d$ is called *Lebesgue point* of f if

$$\lim_{\mu(B)\to 0, x\in B}\frac{1}{\mu(B)}\int_{B}|f(y)-f(x)|d\mu(y)=0,$$

where B denotes a Euclidean ball.

- (i) Prove that if f is continuous at x, then x is a Lebesgue point of f.
- (ii) Prove that almost every $x \in \mathbb{R}^d$ is a Lebesgue point of f.

(Turn the page.)

5*. Let \mathcal{R} be the collection of axis-parallel rectangles in \mathbb{R}^2 . With $M_{\mathcal{R}}$ defined as in (1), show that (2) does not hold. That is, show that for every $n \in \mathbb{N}$ there exists $f \in L^1(\mathbb{R}^2)$ so that

$$\sup_{\lambda>0} \lambda \mu(\{M_{\mathcal{R}}f > \lambda\}) \ge n \|f\|_{L^1(\mathbb{R}^2)}.$$

6*. Let φ be a non-negative integrable function on \mathbb{R} which is even (that is, $\varphi(x) = \varphi(-x)$ for all $x \in \mathbb{R}$) and non-increasing on $[0, \infty)$. For t > 0 we let $\varphi_t(x) = t^{-1}\varphi(t^{-1}x)$. Prove that for a.e. $x \in \mathbb{R}$ and every integrable function f we have

$$\sup_{t>0} |f * \varphi_t(x)| \le ||\varphi||_1 M f(x),$$

where Mf denotes the centered Hardy-Littlewood maximal function as defined in Problem 2. *Hint:* First prove it if φ is a simple function.