Math 629, Spring 2020 (Roos) – Homework 8.

Due Monday, April 13.

Important: Please submit your homework as a compressed pdf file $(< 1 \text{ MB}, \text{ scans of handwritten work are okay, use an appropriate app) online to <math>\texttt{jroos@math.wisc.edu}$ with subject line Math 629 - Homework 8.

(Problems with an asterisk (*) are optional; problems with two asterisks (**) are optional and may be more challenging.)

1. Let $f \in L^1(\mathbb{R}^d)$. Define the Fourier transform of f by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi ix\cdot\xi} dx \quad (\xi \in \mathbb{R}^d)$$

(Here $x \cdot \xi = \sum_{i=1}^{d} x_i \xi_i$.) Observe that $\widehat{f}(\xi)$ is well-defined, since $|e^{-2\pi i x \cdot \xi}| = 1$ for every $x, \xi \in \mathbb{R}^d$, so $x \mapsto f(x)e^{-2\pi i x \cdot \xi}$ is integrable for every $\xi \in \mathbb{R}^d$.

(i) Show that $\widehat{f}: \mathbb{R}^d \to \mathbb{C}$ is a continuous function and $\|\widehat{f}\|_{\infty} \leq \|f\|_1$.

(ii) Show that for every $f, g \in L^1(\mathbb{R}^d)$ we have

$$\widehat{f * g} = \widehat{f} \cdot \widehat{g}.$$

(iii) Define translation of f by $T_y f(x) = f(x-y)$ for $y \in \mathbb{R}^d$, modulation of f by $M_{\xi} f(x) = e^{2\pi i x \cdot \xi} f(x)$ for $\xi \in \mathbb{R}^d$ and dilation of f by $D^p_{\delta} f(x) = \delta^{\frac{d}{p}} f(\delta x)$ for $\delta > 0$ and $p \in [1, \infty]$. Prove the following properties:

$$\widehat{T_y f} = M_{-y} \widehat{f}, \quad \widehat{M_{\xi} f} = T_{\xi} \widehat{f}, \quad \widehat{D_{\delta}^p f} = D_{\delta^{-1}}^{p'} \widehat{f}$$

(Here $\frac{1}{p} + \frac{1}{p'} = 1$.)

(iv) Let $g(x) = e^{-\pi |x|^2}$ (we know that $g \in L^1(\mathbb{R}^d)$). Prove that $\widehat{g} = g$. *Hint:* First prove it for d = 1 and then use Fubini.

(v*) Prove that if f is compactly supported, then \widehat{f} cannot be compactly supported.

2. Let $K \in L^1(\mathbb{R}^d)$ be bounded and supported on a bounded set with $\int K = 1$. Define $K_{\delta}(x) = \delta^{-d}K(\delta^{-1}x)$ for every $\delta > 0$. Show that $(K_{\delta})_{\delta>0}$ is an approximation of identity in the sense defined in the lecture.

3. Let $E \subset \mathbb{R}$ be a measurable set with positive Lebesgue measure.

(i) Show that there exist $x \in \mathbb{R}, y > 0$ such that $x, x + y, x + 2y \in E$.

(ii*) Let k be a positive integer. Show that there exist $x \in \mathbb{R}, y > 0$ such that $x, x + y, x + 2y, \dots, x + ky \in E$.

(Turn the page.)

- **4.** Let $E \subset \mathbb{R}$ be measurable with m(E) > 0. Does there exist a sequence $(s_n)_{n \in \mathbb{N}}$ such that the complement of $\bigcup_{n \in \mathbb{N}} (s_n + E)$ has measure zero? (Prove or disprove.)
- 5^* . In this exercise we introduce a variant of the Hardy-Littlewood maximal function and use it to give an alternative proof of the weak (1,1) bound for the Hardy-Littlewood maximal function. Fix a real number s. By \mathcal{D}_s we denote the collection of intervals of the form $[2^k(\ell+s), 2^k(\ell+s+1))$ with $k, \ell \in \mathbb{Z}$. These are called *dyadic intervals* (with shift s). Observe that every two dyadic intervals $I, J \subset \mathcal{D}_s$ have the property that they are either disjoint or contained in each other. Given $f \in L^1(\mathbb{R}^d)$, define the *dyadic maximal function*

$$M_s f(x) = \sup_{I \in \mathcal{D}_s, x \in I} \frac{1}{|I|} \int_I |f| \quad (x \in \mathbb{R})$$

- (i) Show that for every $\lambda > 0$, the set $\{M_0 f > \lambda\} \subset \mathbb{R}$ can be written as a union over pairwise disjoint dyadic intervals in \mathcal{D}_0 .
- (ii) Prove that there exists a constant C>0 such that for every $\lambda>0$ and every $f\in L^1(\mathbb{R})$ we have

$$\mu(\{M_0 f > \lambda\}) \le C\lambda^{-1} ||f||_1.$$

- (iii) Observe that (ii) also holds with M_s in place of M_0 for every $s \in \mathbb{R}$.
- (iv) Show that there exists a constant c > 0 such that for every interval $I \subset \mathbb{R}$ there exists an interval $J \in \mathcal{D}_0 \cup \mathcal{D}_{1/3} \cup \mathcal{D}_{2/3}$ such that $I \subset J$ and $|J| \leq c|I|$.
- (v) Let M denote the Hardy-Littlewood maximal function as defined in the lecture. Show that there exists c>0 such that

$$Mf \le c(M_0f + M_{1/3}f + M_{2/3}f)$$

In particular, $\mu(\{Mf > \lambda\}) \le c'\lambda^{-1}||f||_1$ for every $\lambda > 0$.

¹You are not allowed to use the weak (1,1) bound for the Hardy-Littlewood maximal function seen in the lecture!