Math 629, Spring 2020 (Roos) – Homework 9. Due Monday, April 20.

Important: Please submit your homework as a compressed pdf file (< 1 MB, scans of handwritten work are okay, use an appropriate app) online to jroos@math.wisc.edu with subject line Math 629 - Homework 9.

(Problems with an asterisk (*) are optional; problems with two asterisks (**) are optional and may be more challenging.)

- **1.** Let $(X, \|\cdot\|)$ denote a normed vector space (over \mathbb{R} or \mathbb{C}).
- (i) Show that there exists an inner product $\langle \cdot, \cdot \rangle$ on X such that $\langle x, x \rangle = ||x||^2$ if and only if for all $x, y \in X$,

$$2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x - y||^2.$$

- (ii) Show that L^p (where $p \in [1, \infty]$) can be equipped with an inner product so that $\langle f, f \rangle = ||f||_p^2$ if and only if p = 2.
- **2.** By $C_c^{\infty}(\mathbb{R}^d)$ let us denote the space of smooth functions $\varphi: \mathbb{R}^d \to \mathbb{C}$ that have a compact support supp $(f) = \overline{\{x \in \mathbb{R}^d : f(x) \neq 0\}}$.
- (i) $C_c^{\infty}(\mathbb{R}^d)$ contains non-trivial functions: consider $\varphi(x) = \mathbf{1}_{|x|<1}e^{-(1-|x|^2)^{-1}}$. Show that $\varphi \in C_c^{\infty}(\mathbb{R}^d)$.
 - (ii) Prove that $C_c^{\infty}(\mathbb{R}^d)$ is a dense subspace of $L^p(\mathbb{R}^d)$ for all $p \in [1, \infty)$.
- (iii*) Looking at the function $f = 1 \in L^{\infty}(\mathbb{R}^d)$ shows that (ii) fails for $p = \infty$. Determine the closure of $C_c^{\infty}(\mathbb{R}^d)$ in $L^{\infty}(\mathbb{R}^d)$.
- **3.** Suppose that $f \in L^1([0,1])$. For $n \in \mathbb{Z}$ let $a_n = \int_0^1 f(x)e^{-2\pi ixn}dx \in \mathbb{C}$. For each $x \in [0,1]$ and $r \in [0,1]$ define

$$\mathcal{A}(x,r) = \sum_{n \in \mathbb{Z}} a_n r^{|n|} e^{2\pi i n x}.$$

(Observe the series is absolutely summable if $r \in [0, 1)$.) Show that for almost every $x \in [0, 1]$, $\mathcal{A}(x, r)$ converges to f(x) as $r \to 1$.

4. Let $f \in L^p(\mathbb{R}^d)$ for $p \in [1, \infty)$. Show that

$$||f||_p = \left(\int_0^\infty p\lambda^{p-1}\mu(\{|f| > \lambda\})d\lambda\right)^{1/p}.$$
(Turn the page.)

5.** Let (X, Σ, μ) be a σ -finite measure space. For $p \in [1, \infty)$ denote by $L^{p,\infty}$ (weak- L^p) the set of measurable functions $f: X \to \mathbb{C}$ so that

$$[f]_{p,\infty} := \sup_{\lambda > 0} \lambda \mu(\{|f| > \lambda\})^{1/p} < \infty.$$

We also write $L^{\infty,\infty}=L^\infty$. As in the case p=1 seen in the lecture observe that this defines a quasi-norm and $[f]_{p,\infty} \leq \|f\|_p$. Let $p,q \in [1,\infty]$ and let T_1 denote a bounded linear operator $L^p \to L^{p,\infty}$ and T_2 a bounded linear operator $L^q \to L^{q,\infty}$ so that $T_1|_{L^p \cap L^q} = T_2|_{L^p \cap L^q}$. Let $\theta \in (0,1)$ and p_θ be defined by $\frac{1}{p_\theta} = \frac{\theta}{p} + \frac{1-\theta}{q}$. Prove that there exists a bounded linear extension T of T_1, T_2 mapping $L^{p_\theta} \to L^{p_\theta}$.

Hints: It helps to work with dense subspaces as seen in the lecture. Then T, T_1, T_2 are mostly denoted by the same letter, say T. Use Problem 4 to start estimating $||Tf||_{p_{\theta}}$. Cut functions into pieces with large and small values and use Chebyshev's inequality. Treat the (easier) case when p or q is ∞ separately.

- **6*.** These are sample applications of the result in Problem 5:
- (i) Let M denote the Hardy-Littlewood maximal operator on \mathbb{R}^d seen in the lecture. Prove that M is bounded $L^p \to L^p$ for all $p \in (1, \infty]$.
- (ii) Let \mathcal{F} denote the Fourier transform, initially defined on $L^1(\mathbb{R}^d)$. In the lecture we saw how to extend \mathcal{F} from a dense subspace to $L^2(\mathbb{R}^d)$ via Plancherel's theorem. Prove that for each $p \in (1,2)$, \mathcal{F} extends to a bounded linear operator $L^p(\mathbb{R}^d) \to L^{p'}(\mathbb{R}^d)$. That is, for each $p \in (1,2)$ show that there exists $C \in (0,\infty)$ so that $\|\mathcal{F}f\|_{p'} \leq C\|f\|_p$ for a suitable dense class of f. Here $\frac{1}{p} + \frac{1}{p'} = 1$.
- (iii**) Prove that (ii) fails for p > 2: the Fourier transform cannot be extended to $L^p(\mathbb{R}^d)$ for p > 2.