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1 Introduction

It is well known [5], [9] that an analytic function f 6≡ 0 on the unit disk D

in the complex plane, satisfying |f(z)| ≤ 1 for all z ∈ D, can be uniquely

factored as

f = mf · qf (1.1)

where mf is an inner function, i.e. a bounded analytic function satisfying

|mf (z)| = 1 almost everywhere on T = ∂D and qf is an outer function,

i.e. − log |qf | is the Poisson extension of an absolutely continuous positive

measure. Inner functions can be further factored into a Blaschke product,

that is, a convergent product of functions of the form1 bn(z) = |z0|
z0

z0−z
1−zz0 ,

z0 ∈ D, and a non-vanishing inner function.

This work describes that factorization for the case that f is a bounded

analytic matrix-valued function on the unit disk (we will abbreviate the term

matrix-valued function by mvf from now on). It should be noted that a

factorization of the type (1.1) can be achieved also for a more general class

of functions taking as values operators on a Hilbert space. This theory was

developed by Sz.-Nagy et al. [13] and uses abstract machinery of operator

theory.

However, our goal is to provide a more explicit understanding for the

case of matrices. An appropriate generalization of the Poisson integral rep-

resentations for scalar inner and outer functions turns out to be given by

multiplicative integrals. These are defined in a similar manner to classical

Riemann-Stieltjes integrals, where the usual Riemann sums are replaced by

products and we are integrating over matrices instead of complex numbers.

A motivation for considering multiplicative integrals originates in the study

of the nonlinear Fourier transform or scattering transform [14], a certain dis-

crete nonlinear analogue of the classical Fourier transform. Multiplicative

integrals also arise naturally in the theory of canonical systems of ordinary

differential equations, as they can be interpreted as monodromy matrices

1With obvious modifications if z0 = 0.
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of such systems [2], [3]. In physics, particularly in quantum field theory,

multiplicative integrals play a central role and are known as time-ordered or

path-ordered exponentials.

Multiplicative representations for certain classes of analytic mvfs have

been developed by V.P. Potapov [7]. The inner-outer factorization of bounded

analytic mvfs was found by Ginzburg [6], but he omits the details of his

proofs. We are trying to fill in the gaps.

Let us proceed to describe the main result. This requires a few definitions,

which we will briefly state now. They will be repeated and covered in greater

detail in later sections.

A bounded analytic mvf is a mvf whose entries are bounded analytic

functions. A Blaschke-Potapov product is a possibly infinite product of mvfs

on the unit disk of the form

b(z) = I − P +
|z0|
z0

z0 − z
1− zz0

P (1.2)

for some z0 ∈ D and an orthogonal projection P . By convention, we also

allow a Blaschke-Potapov product to be multiplied by a unitary constant. We

call a mvf A on an interval [a, b] increasing if it is Hermitian and A(t)−A(s)

is positive semidefinite for all t, s ∈ [a, b] with t ≥ s. By an outer mvf we

mean a bounded analytic mvf on the unit disk of the form

E(z) = U

y∫ 2π

0

exp

(
z + eiϕ

z − eiϕ
M(ϕ)dϕ

)
(1.3)

where U is a unitary constant, M an integrable and Hermitian mvf, whose

least eigenvalue is bounded from below. The symbol
y∫

denotes a multiplica-

tive integral, which we will discuss in detail in Section 2. A pp-inner inner

function is a mvf on the unit disk taking the form

Spp(z) = U

m∏
k=1

y∫ lk

0

exp

(
z + eiθk

z − eiθk
dEk(t)

)
(1.4)

for a unitary constant U , m ∈ N ∪ {∞}, lk > 0, θk ∈ [0, 2π) and increasing
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mvfs Ek with tr Ek(t) = t. By an sc-inner function we mean a mvf on the

unit disk which can be written as

Ssc(z) = U

y∫ 2π

0

exp

(
z + eiϕ

z − eiϕ
dS(ϕ)

)
(1.5)

for a unitary constant U and a singular continuous increasing mvf S. More

details and equivalent characterizations for these definitions will be given in

Section 4. We can now state the main theorem.

Theorem 1.1. Let A be a bounded analytic function on D such that detA 6≡ 0.

Then there is a Blaschke-Potapov product B, a pp-inner mvf Spp, an sc-inner

mvf Ssc and an outer mvf E such that

A(z) = B(z)Spp(z)Ssc(z)E(z) (1.6)

for all z ∈ D. Moreover, this factorization is unique in the sense that the

factors are uniquely determined up to multiplication with a unitary constant.

Also, the function M in the representation (1.3) is uniquely determined

up to changes on a set of measure zero.

It is a natural question, whether also the functions S,Ek in (1.4), (1.5)

are uniquely determined. We will see that the answer to that question is, at

least in the case of the functions Ek, negative.

This thesis is structured as follows. In Section 2 we develop the theory of

multiplicative Riemann-Stieltjes integrals to an extent sufficient for our pur-

pose. Section 3 presents Potapov’s fundamental theorem on multplicative

representations of contractive mvfs (Theorem 3.1). We also discuss conver-

gence and uniqueness questions on Blaschke-Potapov products. The next

section is devoted to the proofs of Theorem 1.1 and some additional prop-

erties of inner and outer mvfs. In the appendix we have assembled several

basic facts which are needed in the text. This includes in particular a proof

of Herglotz’ representation theorem for mvfs, which is used in a crucial step

in the proof of Potapov’s fundamental theorem.
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2 Multiplicative integrals

The multiplicative integrals which we are concerned with are certain multi-

plicative analogues of classical Riemann-Stieltjes integrals.

Multiplicative integrals first originated in the work of V. Volterra who

considered them in 1887 for the purpose of studying systems of ordinary

differential equations. L. Schlesinger later formulated Volterra’s concepts in

a rigorous framework, cf. [10]. An overview of the subject is given in [11].

However, the focus there is on multiplicative Riemann and Lebesgue inte-

grals. Multiplicative integrals of Stieltjes type are discussed in [7, Appendix

§1] and [4, §25].

2.1 Definition

Let us first fix some notation and conventions which will be used not only in

this section, but throughout the entire text.

The space of n × n matrices with entries in C will be denoted by Mn.

We equip Mn with the matrix norm ‖A‖ = sup‖x‖2=1 ‖Ax‖2 where ‖ · ‖2

denotes the Euclidean norm in Cn. Several properties and estimates for this

norm are given in Appendix A.1. They will be used without further reference

throughout the text.

We call a matrix A ∈Mn positive and write A ≥ 0, if it is Hermitian and

positive semidefinite. For a positive definite Hermitian matrix A we write

A > 0 and call it strictly positive.

A mvfA : [a, b]→Mn is called increasing if it is Hermitian and monotonously

increasing, i.e. A(t) ≥ A(s) whenever t ≥ s. Likewise, A is called strictly

increasing if A(t) > A(s) whenever t > s. The terms decreasing and strictly

decreasing are defined accordingly.
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2.1 Definition

Definition 2.1. Let a ≤ b. A subdivision or partition τ of the interval [a, b]

is a finite set of real numbers {ti ∈ [a, b] : i = 0, . . . ,m} such that

a = t0 ≤ t1 ≤ · · · ≤ tm = b

Define ∆iτ = ti − ti−1 for i = 1, . . . ,m and ν(T ) = maxi ∆iτ . Moreover,

given a mvf E : [a, b] → Mn, we set ∆iE = ∆τ
iE = E(ti) − E(ti−1) for

i = 1, . . . ,m. Also define

varτ[a,b]E =
m∑
i=1

‖∆iE‖

Then E is called of bounded variation if

var[a,b]E = sup
τ∈T ba

varτ[a,b]E <∞

The space of bounded variation functions (BV-functions) with values in

Mn is denoted by BV([a, b];Mn). If n = 1, we write BV([a, b]). For f ∈
BV([a, b];Mn), we call

|E|(t) = var[a,t]E

the total variation function of E. It should not be confused with ‖E(t)‖,
which is the matrix norm of E(t).

Given a subdivision τ , choose intermediate points ξ = (ξi)i=1,...,m with ξi ∈
[ti−1, ti]. By T ba we denote the set of tagged partitions (τ, ξ) such that τ is

a subdivision of the interval [a, b] and ξ is a choice of corresponding inter-

mediate points. Given also a function f on [a, b] with values in C or Mn we

define

P (f, E, τ, ξ) = P (τ, ξ) =
y∏m

i=1
exp(f(ξi)∆iE)

Here
y∏m

i=1Ai = A1 · A2 · · ·Am denotes multiplication of the matrices (Ai)i

from left to right. We will also often simply write
∏m

i=1Ai for
y∏m

i=1Ai. Sim-

ilarly,
x∏m

i=1Ai = Am · Am−1 · · · A1 denotes multiplication from right to

left.
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2.1 Definition

The P (τ, ξ) form a net with respect to the directed set (T ba ,≤), where we

say that (τ, ξ) ≤ (τ ′, ξ′) if τ ′ ⊂ τ . Note that τ ′ ⊂ τ implies ν(τ) ≤ ν(τ ′), but

the converse is not true.

Definition 2.2. Let X = C or X = Mn. For a matrix P ∈Mn and functions

f : [a, b] → X, E : [a, b] → Mn we say that P is the (right) multiplica-

tive Stieltjes integral corresponding to this data if the net (P (τ, ξ))(τ,ξ)∈T ba

converges to P :

P = lim
ν(τ)→0

P (τ, ξ) (2.1)

i.e. for every ε > 0 there exists a (τ0, ξ0) ∈ T ba such that

‖P (τ, ξ)− P‖ < ε for every (τ, ξ) ≤ (τ0, ξ0)

In words, we will often refer to this as ”the limit as ν(τ)→ 0”. We introduce

the notation

P =

y∫ b

a

exp(f dE) =

y∫ b

a

ef dE

For short we also write f ∈Mb
a[E] to denote the existence of

y∫ b
a

exp(f dE).

For the remainder of this section we will be concerned with criteria for

the existence of multiplicative integrals.

Lemma 2.1 (Cauchy criterion). Suppose that f, E, a, b are as above and that

for every ε > 0 there exists a (τ0, ξ0) ∈ T ba such that for all (τ, ξ), (τ ′, ξ′) ≤
(τ0, ξ0) we have

‖P (f, E, τ, ξ)− P (f, E, τ ′, ξ′)‖ < ε

Then the integral
y∫ b
a

exp(f dE) exists. The converse also holds.

Proof. The condition in the lemma means that (P (τ, ξ))(τ,ξ) is a Cauchy net

on the complete space Mn. Hence it converges.

9



2.1 Definition

Proposition 2.2. Let f : [a, b]→ C be Riemann integrable and E : [a, b]→

Mn Lipschitz continuous. Then the multiplicative integral
y∫ b
a

exp(f dE) ex-

ists.

Proof. By Lebesgue’s criterion for Riemann integrability we can choose

M > 0 such that |f(t)| ≤ M for all t ∈ [a, b]. Let L > 0 be a Lips-

chitz constant for E and set C = M · L. Now consider (τ, ξ), (τ ′, ξ′) ∈ T ba
and assume that τ ′ coincides with τ except on the subinterval [tk−1, tk] for

some fixed k = 1, . . . ,m, where it is given by

tk−1 = s0 ≤ s1 ≤ · · · ≤ sl = tk

We denote the intermediate points ξ′ in [ti−1, ti] by ζj ∈ [sj−1, sj] for j =

1, . . . , l. Then

‖P (τ, ξ)− P (τ ′, ξ′)‖

≤ e
∑
j 6=k |f(ξj)|·‖∆jE‖‖ exp(f(ξk)∆kE)−

l∏
j=1

exp(f(ζj)(E(sj−1)− E(sj)))‖

≤ eC(b−a)‖ exp(f(ξk)∆kE)−
l∏

j=1

exp(f(ζj)(E(sj−1)− E(sj)))‖

(2.2)

Set Aj = f(ζj)(E(sj)− E(sj−1)). Note that

l∑
j=1

‖Aj‖ ≤ C

l∑
j=1

(sj − sj−1) = C∆kτ (2.3)

We now use the power series expansion of exp to see

l∏
j=1

exp(Aj) = I +
l∑

j=1

Aj +R (2.4)
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2.1 Definition

Apply (2.3) to estimate the remainder term R as follows

‖R‖ ≤ exp

(
l∑

j=1

‖Aj‖

)
− 1−

l∑
j=1

‖Aj‖ ≤ C2(∆kτ)2eC(b−a) (2.5)

Similarly we obtain

exp(f(ξk)∆kE) = I + f(ξk)∆kE +R′ (2.6)

where R′ also satisfies ‖R′‖ ≤ C2(∆kτ)2eC(b−a). Plugging (2.6) and (2.4) into

(2.2) yields

‖P (τ, ξ)− P (τ ′, ξ′)‖ ≤ LeC(b−a)

l∑
j=1

|f(ξk)− f(ζj)|(sj − sj−1) + 2C2(∆kτ)2e2C(b−a)

≤ LeC(b−a)osc[tk−1,tk]f ·∆kτ + 2C2(∆kτ)2e2C(b−a)

(2.7)

where for an interval I ⊆ [a, b], oscIf = sup{|f(t) − f(s)| : s, t ∈ I} =

supI f − infI f denotes the oscillation of f on I.

Now let (τ ′, ξ′) ∈ T ba be arbitrary and write τ ′ = {s(k)
j : k = 1, . . . ,m, j =

0, . . . , lk} where

a = t0 = s
(1)
0 ≤ s

(1)
1 ≤ · · · ≤ s

(1)
l1

= t1 = s
(2)
0 ≤ · · · ≤ s

(m)
lm

= tm = b

Then we apply the above estimate (2.7) m times to obtain

‖P (τ, ξ)− P (τ ′, ξ′)‖ ≤ LeC(b−a)

m∑
k=1

osc[tk−1,tk]f ·∆kτ + 2C2e2C(b−a)(b− a)ν(τ)

(2.8)

Since oscIf = supI f−infI f , the Darboux definition of Riemann integrability

by upper and lower sums implies that we can make the sum on the right

hand side arbitrarily small for small enough ν(τ). The claim now follows

from Lemma 2.1.
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2.2 Properties

Proposition 2.3. Let f : [a, b] → C be continuous and E : [a, b] → Mn

be a mvf of bounded variation. Then the multiplicative integral
y∫ b
a

exp(f dE)

exists.

The proof is very similar as for the last proposition (see [7, Appendix

§1.1], so we omit it. We do not claim that these existence results are in any

way optimal. However, they are sufficient for the purpose of this thesis.

2.2 Properties

In this section we state and prove several important properties for multiplica-

tive integrals. Among them are in particular a formula for the determinant,

a change of variables formula and some estimates relating multiplicative in-

tegrals to (additive) Riemann-Stieltjes integrals.

First let us consider the case when the multiplicative integral reduces to

an additive integral.

Proposition 2.4. If f ∈Mb
a[E] and the family of matrices {E(t) : t ∈ [a, b]}

commutes, then

y∫ b

a

exp(f(t)dE(t)) = exp

(∫ b

a

f(t)dE(t)

)
In particular, this is always the case if n = 1.

Proof. This follows from the relation eA+B = eAeB which holds if AB = BA.

The next property will be of fundamental importance in later arguments

and allows us to decompose multiplicative integrals into products with re-

spect to a decomposition of the interval.

Proposition 2.5. Let a ≤ b ≤ c. If f ∈ Mc
a[E], then f ∈ Mb

a[E] ∩Mc
b[E]

and
y∫ c

a

exp(f dE) =

y∫ b

a

exp(f dE)

y∫ c

b

exp(f dE)
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2.2 Properties

Proof. To a partition of [a, b] or [b, c] we can always add one more point to

make it a partition of [a, c]. Therefore Lemma 2.1 implies f ∈Mb
a[E] ∩Mc

b[E].

For brevity let us write Ica, I
b
a, I

c
b , respectively for the three multiplicative

integrals in the claim. On the other hand, given (τ, ξ) ∈ T ca , we find

(τ0, ξ0) ∈ T ba , (τ1, ξ1) ∈ T cb such that ν(τi) ≤ ν(τ) for i = 0, 1 and P (τ, ξ) =

P (τ0, ξ0)P (τ1, ξ1). Let us choose ε > 0, δ > 0 such that for (τ, ξ) ∈ T ca with

ν(τ) < δ we have ‖P (τ, ξ)− Ica‖ < ε and the same holds correspondingly for

such partitions of the subintervals [a, b], [b, c]. Then,

‖Ica−IbaIcb‖ ≤ ‖Ica−P (τ, ξ)‖+‖IbaIcb−P (τ, ξ)| < ε+‖IbaIcb−P (τ0, ξ0)P (τ1, ξ1)‖

Now applying the identity xy−zw = 1
2

((x− z)(y + w) + (y − w)(x+ z)), we

can estimate the remaining term as ‖IbaIcb − P (τ0, ξ0)P (τ1, ξ1)‖ ≤ Cε, where

C > 0 is an appropriate constant. Letting ε→ 0 we obtain Ica = IbaI
c
b .

Proposition 2.6. Let A be a constant matrix. Then

y∫ b

a

exp(Ad(tI)) = exp((b− a)A)

Proof. Let (τ, ξ) ∈ T ba . Then

P (τ, ξ) =
m∏
j=1

exp(A∆jτ) = exp(A(b− a))

Example. Let A =

(
0 1

1 0

)
. Then

y∫ 1

0

exp(Ad(tI)) = exp(A) =

(
cosh(1) sinh(1)

sinh(1) cosh(1)

)

Unfortunately, there is no general formula for integrating a constant with
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2.2 Properties

respect to a general integrator. Typically we have

y∫ b

a

exp(AdE(t)) 6= exp(A · (E(b)− E(a))) (2.9)

Example. LetA be as in the last example andB = diag(1, 2). ThenAB 6= BA.

Set E(t) = tA for t ∈ [−1, 0) and E(t) = tB for t ∈ [0, 1]. Then

y∫ 1

−1

exp(dE(t)) = eA · eB 6= eA+B = eE(1)−E(−1)

But equality holds of course in (2.9) if the family of matrices {A}∪{E(t) :

t ∈ [a, b]} commutes.

Proposition 2.7 (Determinant formula). For f ∈Mb
a[E] we have

det

y∫ b

a

exp(f(t) dE(t)) = exp

(∫ b

a

f(t) dtr E(t)

)
In particular, multiplicative integrals always yield invertible matrices.

Proof. For (τ, ξ) ∈ T ba we have

detP (τ, ξ) =
m∏
j=1

det exp(f(ξj)∆jE) = exp

(
m∑
j=1

f(ξj)∆j(tr E)

)

The claim now follows by continuity of the determinant.

Proposition 2.8. Let f ∈Mb
a[E] and U a constant invertible matrix. Then

U

y∫ b

a

exp(f dE)U−1 =

y∫ b

a

exp(f d(UEU−1))

Proof. This follows from UeAU−1 = eUAU
−1

.

The next fact will be useful to determine when a multiplicative integral

is unitary.
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2.2 Properties

Proposition 2.9. Suppose E is Hermitian and f ∈Mb
e[E]. Let

A =

y∫ b

a

exp(f dE)

Then

AA∗ =

y∫ b

a

exp(2Re f dE)

Proof. Let (τ, ξ) ∈ T ba . We have(
y∏m

k=1
exp(f(ξk)∆kE)

)∗
=

x∏m

k=1
exp(f(ξk)∆kE)

Further(
y∏m

k=1
exp(f(ξk) ∆kE)

)(
x∏m

k=1
exp(f(ξk) ∆kE)

)
=

y∏m

k=1
exp((f(ξk)+f(ξk)) ∆kE)

Letting ν(τ)→ 0 gives the claim.

Now we prove two important estimates for multiplicative integrals in

terms of additive Riemann-Stieltjes integrals.

Proposition 2.10. Assume that f ∈ Mb
a[E], E ∈ BV([a, b];Mn) and |f | is

Stieltjes integrable with respect to |E|. Then∥∥∥∥∥∥
y∫ b

a

exp(f(t) dE(t))

∥∥∥∥∥∥ ≤ exp

(∫ b

a

|f(t)|d|E|(t)
)

Proof. Choose (τ, ξ) ∈ T ba . Then

‖P (τ, ξ)‖ ≤
m∏
j=1

exp(|f(ξj)|‖∆jE‖) = exp

(
m∑
j=1

|f(ξj)|‖∆jE‖

)
.

Also, we have ‖∆jE‖ ≤ var[tj−1,tj ]E = |E|(tj) − |E|(tj−1) = ∆j|E|. Letting

ν(τ)→ 0 we obtain the claim.
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2.2 Properties

Proposition 2.11. Let f ∈ Mb
a[E], E ∈ BV([a, b];Mn) and |f | be Stieltjes

integrable with respect to |E|. Then

y∫ b

a

exp(f(t) dE(t)) = I +

∫ b

a

f(t) dE(t) +R

where R is a matrix that satisfies

‖R‖ ≤
∞∑
ν=2

1

ν!

(∫ b

a

|f(t)| d|E|(t)
)ν

(2.10)

If
∫ b
a
|f |d|E| ≤ 1, then there exists 0 < C < 1 such that

‖R‖ ≤ C

(∫ b

a

|f(t)| d|E|(t)
)2

Proof. Let (τ, ξ) ∈ T ba . We expand the product P (τ, ξ) using the exponential

series:

P (τ, ξ) =
m∏
j=1

∞∑
ν=0

(f(ξj)∆jE)ν

ν!
= I +

m∑
j=1

f(ξj)∆jE +R

where the remainder term R = R(τ, ξ) is of the form R =
∑∞

ν=2 Tν with the

terms Tν of order ν being

Tν =
∑

ν1+···+νm=ν

y∏m

j=1

(f(ξj)∆jE)νj

νj!
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2.2 Properties

We use the triangle inequality and ‖∆jE‖ ≤ ∆j|E| to estimate

‖Tν‖ ≤
∑

ν1+···+νm=ν

m∏
j=1

(|f(ξj)| ·∆j|E|)νj
νj!

=
1

ν!

∑
ν1+···+νm=ν

(
ν

ν1, · · · , νm

) m∏
j=1

(|f(ξj)| ·∆j|E|)νj

=
1

ν!

(
m∑
j=1

|f(ξj)| ·∆j|E|

)ν

Letting ν(τ)→ 0 we obtain the first part of the claim.

If now
∫ b
a
|f |d|E| ≤ 1, then

‖R‖ ≤ C

(∫ b

a

|f(t)| d|E|(t)
)2

holds with C =
∑∞

ν=2
1
ν!

= e− 2.

Lastly, we give a change of variables formula for multiplicative integrals.

Note that we allow the variable transformation to have jump discontinuities.

Proposition 2.12 (Change of variables). If ϕ : [a, b] → [α, β] is a strictly

increasing function with ϕ(a) = α and ϕ(b) = β, f continuous on [α, β] and

E a continuous increasing mvf on [a, b], then

y∫ b

a

exp(f(ϕ(t)) dE(t)) =

y∫ β

α

exp(f(s) dE(ϕ†(s)))

assuming that the the integrals exist.

Here, ϕ† is the generalized inverse of ϕ given by ϕ†(s) = inf{t ∈ [a, b] :

ϕ(t) ≥ s}, which gives a natural notion of inverse for a general increasing

function. For strictly increasing continuous functions we have ϕ† = ϕ−1.

Jump discontinuities of ϕ translate into intervals of constancy of ϕ† and in-

tervals of constancy of ϕ become jump discontinuities of ϕ†. The generalized

inverse is normalized in the sense that it is left-continuous.
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2.3 The multiplicative Lebesgue integral

Proof. Set g = f ◦ ϕ and F = E ◦ ϕ†. Given a tagged partition (τ, ξ) ∈ T ba
on [a, b], we can apply ϕ to produce a partition on [a, b] given by (τ ′, ξ′) =

(ϕ(τ), ϕ(ξ)) ∈ T βα . This mapping and its inverse respect the partial order on

the set of tagged partitions. That is, refinements of (τ, ξ) map to refinements

of (τ ′, ξ′) and vice versa. Now it only remains to notice that

P (f, F, τ ′, ξ′) =
m∏
i=1

exp(f(ξ′i)∆
τ ′

i F ) =
m∏
i=1

exp(g(ξi))∆
τ
iE) = P (g, E, τ, ξ)

and similarly the other way around.

As opposed to the additive case, this formula does not extend to increas-

ing functions which have intervals of constancy. This corresponds to the

difficulties in computing the multiplicative integral of constants.

2.3 The multiplicative Lebesgue integral

The additive Lebesgue integral can be seen as a special case of the Riemann-

Stieltjes integral. We use this observation to define a multiplicative version

of the Lebesgue integral and show that it behaves as expected. In partic-

ular, there is a Lebesgue differentiation theorem. Let us first recall some

definitions. We denote the Lebesgue measure on the real line by λ.

We say that a mvf A on [a, b] is Lebesgue integrable, if∫ b

a

‖A(t)‖dλ(t) <∞

in that case we write A ∈ L1([a, b];Mn). As usual, we identify two such

functions if they differ only on a set of measure zero. That is, L1 functions

are strictly speaking equivalence classes of functions.

A mvf E on [a, b] is absolutely continuous if for all ε > 0 there exists δ > 0

such that for all partitions τ = {a = t0 < · · · < tm = b} with ν(τ) < δ we

have

varτ[a,b] =
m∑
k=1

‖∆kE‖ < ε

18



2.3 The multiplicative Lebesgue integral

As in the scalar case, absolutely continuous mvfs are differentiable almost

everywhere with integrable derivative. They are also by definition of bounded

variation.

Definition 2.3 (Multiplicative Lebesgue integral). Let A ∈ L1([a, b];Mn).

Define

E(t) =

∫ t

a

A(s) dλ(s)

for t ∈ [a, b]. Then E is absolutely continuous. We define the expression

y∫ b

a

exp(A(t) dt) =

y∫ b

a

exp(dE(t))

to be the multiplicative Lebesgue integral of A. It is well-defined and also

exists by Proposition 2.3.

As for ordinary Riemann-Stieltjes integrals, multiplicative integrals with

an absolutely continuous integrator can be rewritten as multiplicative Lebesgue

integrals.

Proposition 2.13. If E is an absolutely continuous, increasing mvf and f

is a continuous scalar function, then

y∫ b

a

exp(f(t)dE(t)) =

y∫ b

a

exp(f(t)E ′(t)dt)

Proof. As for scalar functions, E is differentiable almost everywhere and the

derivative E ′ is in L1([a, b];Mn). Setting F (t) =
∫ t
a
f(s)E ′(s)dλ(s), the claim

is equivalent to

y∫ b

a

exp(dF (t)) =

y∫ b

a

exp(f(t)dE(t)) (2.11)

Pick a partition τ = {a = t0 < · · · < tm = b}. Apply the mean value theo-

rem of integration to choose ξj ∈ [tj−1, tj] such that f(ξj)
∫ tj
tj−1

E ′(s)dλ(s) =∫ tj
tj−1

f(s)E ′(s)dλ(s). This is possible because f is continuous. Then
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2.3 The multiplicative Lebesgue integral

m∏
k=1

exp(∆jF ) =
m∏
k=1

exp

(∫ tj

tj−1

f(s)E ′(s)dλ(s)

)

=
m∏
k=1

exp

(
f(ξj)

∫ tj

tj−1

E ′(s)dλ(s)

)

=
m∏
k=1

exp(f(ξj)∆jE)

In the limit ν(τ)→ 0, this implies (2.11).

Multiplicative integrals can also be viewed as solutions of certain ordinary

differential equations, as we will see from the next proposition, which we can

also view as a multiplicative version of the classical Lebesgue differentiation

theorem.

Proposition 2.14. Let A ∈ L1([a, b];Mn). Then the function

F (x) =

y∫ x

a

exp(A(t)dt)

is differentiable almost everywhere in (a, b) and

dF

dx
(x) = F (x)A(x) (2.12)

for almost every x ∈ (a, b).

Remark. The uniqueness and existence theory for ordinary differential equa-

tions shows that we could have also defined the multiplicative integral
y∫ x
a

exp(A(t)dt)

as the unique solution of the Cauchy problem given by (2.12) and the initial

value condition F (a) = In.

Proof. By Propositions 2.5 and 2.11 we have for x ∈ (a, b) and h > 0 small

enough:

F (x+ h) = F (x)

y∫ x+h

x

exp(A(t)dt) = F (x)(I +

∫ x+h

x

A(t)dt+R)
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2.4 Helly’s theorems

where ‖R‖ ≤ C
(∫ x+h

x
‖A(t)‖dt

)2

. Therefore

1

h
(F (x+ h)− F (x)) = F (x)

(
1

h

∫ x+h

x

A(t)dt+
R

h

)
A similar calculation works for h < 0. By the Lebesgue differentiation theo-

rem,

lim
h→0

1

h

∫ x+h

x

A(t)dt = A(x)

for almost every x ∈ (a, b). Also,

‖R‖
h
≤ Ch

(
1

h

∫ x+h

x

‖A(t)‖dt
)2

−→ 0

as h→ 0 for almost every x ∈ (a, b). The claim follows.

2.4 Helly’s theorems

Our theory of multiplicative integrals is still missing a convergence theorem.

The aim of this section is to fill in this gap. The convergence theorem we

will obtain is an analogue of Helly’s convergence theorem for scalar Riemann-

Stieltjes integrals (see Theorem B.3 in the appendix). First, we prove two

auxiliary statements.

A useful trick when estimating differences of products is the following.

Lemma 2.15 (Telescoping identity). For matrices Q1, . . . , Qm, P1, . . . , Pm

we have

m∏
ν=1

Pν −
m∏
ν=1

Qν =
m∑
l=1

(
l−1∏
ν=1

Pν

)
(Pl −Ql)

(
m∏

ν=l+1

Qν

)
(2.13)

Proof. We do an induction on m. For m = 1 there is nothing to show.

Setting A =
∏m−1

ν=1 Pν , B = Pm, C =
∏m−1

ν=1 Qν and D = Qm we have

m∏
ν=1

Pν −
m∏
ν=1

Qν = AB − CD = (A− C)D + A(B −D)
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2.4 Helly’s theorems

By the induction hypothesis, the right hand side is equal to

m∑
l=1

(
l−1∏
ν=1

Pν

)
(Pl −Ql)

(
m∏

ν=l+1

Qν

)

The following is a simple estimate for the additive matrix-valued Riemann-

Stieltjes integral.

Lemma 2.16. If E is an increasing mvf on [a, b] and f a bounded scalar

function which is Stieltjes integrable with respect to E, then∥∥∥∥∫ b

a

f dE

∥∥∥∥ ≤ C‖E(b)− E(a)‖

for some constant C > 0.

Proof. For n = 1 the statement is true. Choose C > 0 such that |f(t)| ≤ C

for t ∈ [a, b]. Let v ∈ Cn. Since v∗Ev is an increasing scalar function,∣∣∣∣v∗(∫ b

a

f dE

)
v

∣∣∣∣ =

∣∣∣∣∫ b

a

f(t)d(v∗E(t)v)

∣∣∣∣ ≤ ∫ b

a

|f(t)|d(v∗E(t)v)

≤ C(v∗(E(b)− E(a))v)

Taking the supremum over all v with ‖v‖ = 1 we obtain the claim.

Theorem 2.17 (Helly’s convergence theorem for multiplicative integrals).

Let (Ek)k be a sequence of increasing and uniformly Lipschitz continuous

mvfs on [a, b] which converge pointwise to the function E on [a, b]. Suppose

also that (fk)k is a sequence of uniformly bounded Riemann integrable scalar

functions on [a, b] which converges pointwise to the Riemann integrable func-

tion f . Then

lim
k→∞

y∫ b

a

exp(fk dEk) =

y∫ b

a

exp(f dE)
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2.4 Helly’s theorems

The prerequisites in this theorem are of course not the mildest possible

to arrive at the desired conclusion, but they allow a relatively easy proof and

are sufficient for our applications.

Proof. Let us assume without loss of generality that [a, b] = [0, 1] and that the

uniform Lipschitz constant for all the Ek is 1. Then, since ‖Ek(t)−Ek(s)‖ ≤
|t − s| for all k, also the pointwise limit E is Lipschitz continuous with

Lipschitz constant 1. In particular f ∈ M1
0[E]. Choose a constant K > 0

such that |fk(t)| ≤ K and |f(t)| ≤ K for all t and k. Now we begin by

estimating∥∥∥∥∥∥
y∫ 1

0

ef dE −
y∫ 1

0

efk dEk

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

y∫ 1

0

ef dE −
y∫ 1

0

ef dEk

∥∥∥∥∥∥+

∥∥∥∥∥∥
y∫ 1

0

ef dEk −
y∫ 1

0

efk dEk

∥∥∥∥∥∥
The differences on the right hand side we name d1 and d2, respectively. Let

us first estimate d1. By Proposition 2.10 we have

∥∥∥∥∥∥
y∫ b

a

exp(f dEk)

∥∥∥∥∥∥ ≤ exp

(∫ b

a

|f(t)|dt
)
≤M0 (2.14)

for every 0 ≤ a ≤ b ≤ 1 and k ∈ N ∪ {∞}, where we set E∞ = E and

M0 > 0 is a constant, not depending on a, b. Now let us choose a partition

τ of [0, 1] by setting ti = i
m

for i = 0, . . . ,m. Also set Ii = [ti−1, ti] for

i = 1, . . . ,m.

We apply the telescoping identity (2.13) and the previous estimate (2.14)

to see

d1 =

∥∥∥∥∥∥
m∏
i=1

y∫ ti

ti−1

ef dE −
m∏
i=1

y∫ ti

ti−1

ef dEk

∥∥∥∥∥∥ ≤M
m∑
i=1

∥∥∥∥∥∥
y∫ ti

ti−1

ef dE −
y∫ ti

ti−1

ef dEk

∥∥∥∥∥∥
(2.15)

where M = M2
0 .

For large enough m we have
∫ ti
ti−1
|f(t)|dt ≤ 1. Then Proposition 2.11
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2.4 Helly’s theorems

applied to the multiplicative integrals on the right hand side of (2.15) gives

d1 ≤M

m∑
i=1

∥∥∥∥∫ ti

ti−1

fdE −
∫ ti

ti−1

fdEk

∥∥∥∥+ 2C

(∫ ti

ti−1

|f(t)|dt
)2

(2.16)

To see this, note that the Lipschitz condition on Ek implies |Ek|(t)−|Ek|(s) ≤
t− s for t ≥ s and k ∈ N ∪ {∞}.

We estimate further

∥∥∥∥∫ ti

ti−1

fdE −
∫ ti

ti−1

fdEk

∥∥∥∥ ≤ ∥∥∥∥∫ ti

ti−1

fdE − f(i/m)∆iE

∥∥∥∥+ ‖f(i/m)∆iE − f(i/m)∆iEk‖

+

∥∥∥∥f(i/m)∆iEk −
∫ ti

ti−1

fdEk

∥∥∥∥ (2.17)

Using Lemma 2.16, we get∥∥∥∥∫ ti

ti−1

fdE − f(i/m)∆iE

∥∥∥∥ =

∥∥∥∥∫ ti

ti−1

(f(t)− f(i/m))dE(t)

∥∥∥∥ (2.18)

≤ (oscIif)‖∆iE‖ ≤
oscIif

m
(2.19)

By the same argument also∥∥∥∥f(i/m)∆iEk −
∫ ti

ti−1

fdEk

∥∥∥∥ ≤ oscIif

m
(2.20)

Combining (2.17), (2.18) and (2.20), we see from (2.16), that

d1 ≤MK

m∑
i=1

‖∆iE −∆iEk‖+ 2M
m∑
i=1

(oscIif) · 1

m
+

2CK2

m2
(2.21)

Let ε > 0. Since f is Riemann integrable, we can choose m large enough

such that

2M
m∑
i=1

(oscIif) · 1

m
+

2CK2

m2
≤ ε

3
(2.22)
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2.4 Helly’s theorems

With m fixed like that we now use the pointwise convergence of Ek and make

k large enough such that

MK

m∑
i=1

‖∆iE −∆iEk‖ ≤
ε

6
(2.23)

This is possible, since E − Ek is only being evaluated at finitely many

points. Whenever we make m even larger later on during the estimate of d2,

we silently also increase k accordingly such that (2.23) holds.

Combining (2.21),(2.22) and (2.23), we get d1 ≤ ε
2
.

Let us now estimate d2. Similarly as for d1, the telescoping identity and

Proposition 2.11 imply

d2 ≤M
m∑
i=1

∥∥∥∥∫ ti

ti−1

f dEk −
∫ ti

ti−1

fk dEk

∥∥∥∥+ C

(∫ ti

ti−1

|f(t)|dt
)2

+ (2.24)

+ C

(∫ ti

ti−1

|fk(t)|dt
)2

≤M
m∑
i=1

∫ ti

ti−1

|f(t)− fk(t)|dt+
2CK2

m2

= M

∫ 1

0

|f(t)− fk(t)|dt+
2CK2

m2
(2.25)

Note that f, fk are measurable, therefore we may use Egorov’s theorem to

conclude that for every δ > 0, there exists a measurable set Q ⊂ [0, 1] such

that λ([0, 1]\Q) ≤ δ, where λ denotes the Lebesgue measure on [0, 1], and

fk → f uniformly on Q. Let us choose δ = ε
12MK

and make k large enough

such that |f(t)− fk(t)| ≤ ε
6M

for all t ∈ Q. Then

M

∫ 1

0

|f(t)− fk(t)|dt = M

∫
Q

|f − fk|dλ+M

∫
[0,1]\Q

|f − fk|dλ

≤M
( ε

6M
+ 2Kδ

)
=
ε

3
(2.26)

Note that we have reinterpreted the Riemann-Stieltjes integral as a Lebesgue

integral. Now (2.25) and (2.26) imply d2 ≤ ε
2

for large enough m.

Altogether we proved that
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2.4 Helly’s theorems

∥∥∥∥∥∥
y∫ 1

0

ef dE −
y∫ 1

0

efk dEk

∥∥∥∥∥∥ ≤ d1 + d2 ≤ ε

for sufficiently large k. Since ε was arbitrary, the claim follows.

We will now also prove an analogue of Helly’s selection theorem (see

Theorem B.2 in the appendix). It is not directly related to multiplicative in-

tegrals, but it is a natural addendum to the previous theorem and important

for the proof of Potapov’s theorem in Section 3.

Theorem 2.18 (Helly’s selection theorem for matrix-valued functions). Let

(E(k))k be a uniformly bounded sequence of increasing mvfs on [a, b]. Then

there exists a subsequence (E(kj))j such that E(kj) converges pointwise to an

increasing mvf E on [a, b].

Proof. Choose C > 0 such that ‖E(k)(t)‖ ≤ C for all k and t ∈ [a, b]. We

claim that for all i, j, the entries E
(k)
ij form a sequence of BV-functions with

uniformly bounded total variation. Let τ = {a = t0 ≤ t1 ≤ · · · ≤ tm = b} be

a partition of [a, b]. Then we estimate

|∆lE
(k)
ij | ≤ ‖∆lE

(k)‖ ≤ tr ∆lE
(k) = ∆ltr E

(k) (2.27)

for l = 1, 2, . . . ,m. In the second inequality we have used positivity of ∆lE
(k).

Therefore

varτ[a,b]E
(k)
ij =

m∑
l=1

|∆lE
(k)
ij | ≤

m∑
l=1

∆ltr E
(k) = tr (E(k)(b)− E(k)(a))

Using the estimate tr A =
∑n

i=1Aii ≤ n‖A‖ for A ≥ 0 we see that

var[a,b]E
(k)
ij ≤ 2nC

Hence we can repeatedly apply Helly’s scalar selection Theorem B.2 to find

a subsequence such that all the entries E
(kj)
ij converge pointwise to BV-

functions Eij. The resulting mvf E = (Eij)ij is also increasing as pointwise

limit of increasing mvfs.
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Both theorems were given by Potapov in [7, Appendix §2], but with a

slightly different proof for the selection theorem.

3 Contractive analytic mvfs

By an analytic mvf on the unit disk D ⊂ C we mean a function A : D→Mn

all components of which are holomorphic throughout D. A mvf A : D→Mn

is called contractive if

A(z)A∗(z) ≤ I

for all z ∈ D, i.e. the Hermitian matrix I−A(z)A∗(z) is positive semidefinite.

An equivalent condition is that ‖A(z)‖ ≤ 1 for all z ∈ D. This and some

other basic facts are proven in Appendix A.

We say that A is bounded if

‖A‖∞ = sup
z∈D
‖A(z)‖ <∞

We denote the space of bounded analytic matrix functions on D whose de-

terminant does not vanish identically by H∞. The subspace of analytic mvfs,

which are also contractive on D will be denoted by S ⊂ H∞, where the letter

S is chosen in honour of I. Schur, who studied this class of functions in the

case n = 1.

The goal of this section is to prove a theorem of V.P. Potapov on the

multiplicative structure of functions in the class S. In his paper [7], Potapov

considered the more general case of J-contractive mvfs, however we only

require the case J = I.

Definition 3.1. Let

βz0(z) =

{
z0−z
1−z0z

|z0|
z0
, if z0 6= 0

z, if z0 = 0
(3.1)
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A Blaschke-Potapov factor (B.P. factor) is a function b : D→Mn such that

b(z) = U

(
βz0(z)Ir 0

0 In−r

)
U∗ (3.2)

for all z ∈ D, where U is a constant unitary matrix, 0 < r ≤ n and z0 ∈ C.

We call r the rank of the B.P. factor. A Blaschke-Potapov product (B.P. prod-

uct) is a possibly infinite product of B.P. factors, which may be multiplied

from the right or left by a constant unitary matrix. By convention, also a

unitary constant is considered a B.P. product.

Equivalently, we can define a B.P. factor by

b(z) = I − P + βz0(z)P (3.3)

where P ∈ Mn is an orthogonal projection and z0 ∈ D. The connection

to (3.2) is that P projects onto the r-dimensional image of I − b(0), i.e.

P = U

(
Ir 0

0 0

)
U∗. This shows that B.P. factors are uniquely determined

by the zero z0 and the choice of the subspace that P projects onto.

The condition for the convergence of a B.P. product turns out to be the

same condition as for the scalar analogue (see Theorem 3.4). Whenever in the

following we speak of a B.P. product as a function, it is understood implicitly

that the B.P. product really is convergent in the sense defined later in this

section.

Let us denote the Herglotz kernel by

hz(θ) =
z + eiθ

z − eiθ

for z ∈ D and θ ∈ [0, 2π].

Theorem 3.1 (Potapov). Let A ∈ S. Then A can be written as

A(z) = B(z) ·
y∫ L

0

exp (hz(θ(t)) dE(t)) (3.4)
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3.1 Blaschke-Potapov products

Here, B is a B.P. product corresponding to the zeros of detA, 0 ≤ L <∞, E

an increasing mvf such that tr E(t) = t for t ∈ [0, L] and θ : [0, L] → [0, 2π]

a right-continuous increasing function.

The proof of the theorem will proceed in two steps. First we detach a

maximal Blaschke-Potapov product to obtain a mvf with non-vanishing de-

terminant. In the second step we use an approximation by rational functions

and Helly’s theorems to obtain the desired multiplicative integral represen-

tation.

3.1 Blaschke-Potapov products

In this section we discuss the convergence of B.P. products and prove a fac-

torization of an arbitrary function in H∞ into a maximal Blaschke-Potapov

product and a function with non-vanishing determinant. By a zero of a func-

tion A ∈ S, we always mean a zero of detA, i.e. a point at which A becomes

singular. If z is a zero of A, then the dimension of kerA is called the rank of

the zero.

3.1.1 Convergence of B.P. products

A scalar Blaschke product b(z) = zm
∏∞

i=1
zi−z
1−ziz

|zi|
zi

converges if and only if

the Blaschke condition ∑
i≥1

(1− |zi|) <∞

is fulfilled (see [5, Chapter II.2]). We will prove that the same is true for

B.P. products. It is clear that the Blaschke condition is necessary. For, if

A ∈ H∞, then detA is a scalar bounded analytic function, whence it follows

that its zeros satisfy the Blaschke condition.

We will now prove the converse by adapting the corresponding scalar

proof as presented in [9].

Let us call an infinite product P =
∏∞

i=1Bi of matrices Bi convergent

if the sequence given by Pk =
∏k

i=1 Bi = B1 · B2 · · ·Bk converges in the

‖ · ‖ norm. The limit is then denoted by
∏∞

i=1 Bi. The notion of uniform
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3.1 Blaschke-Potapov products

convergence for an infinite product of matrix-valued functions is defined ac-

cordingly.

Lemma 3.2. Let (Bi)i=1,...,k be given matrices. Then

‖I −
k∏
i=1

Bi‖ ≤
k∏
i=1

(1 + ‖I −Bi‖)− 1

Proof. We do an induction on k. For k = 1 there is nothing to show. Writing

Ak =
∏k

i=1Bi and ak =
∏k

i=1(1 + ‖I −Bi‖) we see that

Ak+1 − I = (Ak − I)(I + (Bk+1 − I)) +Bk+1 − I

and thus

‖I − Ak+1‖ ≤ (ak − 1)(1 + ‖I −Bk+1‖) + ‖I −Bk+1‖ = ak+1 − 1

by the induction hypothesis.

Theorem 3.3. Let (Bi)i be matrix-valued functions on D such that

(a)
∑

i≥1 ‖I −Bi(z)‖ converges uniformly on compact subsets of D and

(b) the sequence Pk(z) =
∏k

i=1 Bi(z) is uniformly bounded on D.

Then P (z) =
∏∞

i=1 Bi(z) converges uniformly on compact subsets of D. The

same theorem holds if we replace
∏

everywhere by
x∏

.

Proof. Let K ⊂ D be compact. By assumption there is C > 0 such that

‖Pk(z)‖ ≤ C for all z ∈ D and k ≥ 1. Choose ε > 0 and N so large that

sup
z∈K

l∑
i=k+1

‖I −Bi(z)‖ < ε

30



3.1 Blaschke-Potapov products

for l ≥ k ≥ N . Then we have by Lemma 3.2

‖Pk(z)− Pl(z)‖ ≤ ‖Pk(z)‖ · ‖I −
l∏

i=k+1

Bi(z)‖

≤ C

(
l∏

i=k+1

(1 + ‖I −Bi(z)‖)− 1

)

≤ C

(
exp

(
l∑

i=k+1

‖I −Bi(z)‖

)
− 1

)
≤ C(eε − 1)

for z ∈ K. The right hand side converges to 0 if ε → 0. The proof for
x∏

works analogously using also an analogous version of Lemma 3.2.

Theorem 3.4. If B is a formal B.P. product corresponding to the zeros

z1, z2, . . . and the Blaschke condition holds, then B converges (uniformly on

compact sets) to an analytic matrix function in D and ‖B‖∞ = 1.

Proof. We may assume zi 6= 0. Now we want to apply Theorem 3.3. Let

Bk(z) =
∏k

i=1 bi(z) be the kth partial product of B and

bi(z) = Ui

(
zi−z
1−ziz

|zi|
zi
Iri 0

0 In−ri

)
U−1
i = I−Ui

( (
1− zi−z

1−ziz
|zi|
zi

)
Iri 0

0 0

)
U−1
i

Then for |z| ≤ r < 1 we get

‖I − bi(z)‖ =

∣∣∣∣1− zi − z
1− ziz

|zi|
zi

∣∣∣∣ =

∣∣∣∣ zi + z|zi|
zi − z|zi|2

∣∣∣∣ (1− |zi|) ≤ 1 + r

1− r
(1− |zi|)

which implies condition (a). Note that ‖Bk‖ is the absolute value of a finite

scalar Blaschke product, so condition (b) is satisfied. By the theorem and

Lemma A.3 we obtain B as an analytic matrix function. ‖B‖∞ = 1 is again

clear because ‖B‖ is the absolute value of a scalar Blaschke product.
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3.1 Blaschke-Potapov products

3.1.2 Factorization

Our next objective is the factorization of an arbitrary bounded analytic ma-

trix function into a B.P. product and a function with non-vanishing determi-

nant. To do this we will first analyze the detachment of a single Blaschke-

Potapov factor from a given contractive analytic function.

Definition 3.2. If A ∈ S has a zero at some z0 ∈ D, we call a B.P. factor b

with b(z0) = 0 detachable from A if b−1A ∈ S.

Lemma 3.5 (Detachability condition). Suppose A ∈ S and detA(z0) = 0

for z0 ∈ D. Then a B.P.factor b, which is given by (3.2) is detachable from

A if and only if

U∗A(z0) =

(
0r 0

∗ ∗

)
(3.5)

where 0r denotes the r × r zero matrix and the ∗ denote arbitrary block

matrices of the appropriate dimensions.

Proof. We use Taylor development to write

A(z) = A(z0) +R(z)(z − z0)

for z in some neighborhood of z0 which is small enough to be contained in

D and R a holomorphic mvf. Writing U∗A(z0) =

(
B C

∗ ∗

)
for some r × r

matrix B and r × (n− r) matrix C we get

b−1(z)A(z) = U

(
βz0(z)Ir 0

0 In−r

)(
B C

∗ ∗

)
+ U

(
βz0(z)(z − z0)Ir 0

0 In−r

)
U∗R(z)

=

(
βz0(z)B βz0(z)C

∗ ∗

)
+ U

(
βz0(z)(z − z0)Ir 0

0 In−r

)
U∗R(z)

Recalling that β−1
z0

is given by (3.1) and thus only has a simple pole at z0 we

see that b−1A is holomorphic at z0 if and only if (3.5) holds. It remains to
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3.1 Blaschke-Potapov products

show that b−1A is in that case contractive. Let ε > 0. Then we can choose

0 ≤ r < 1 so close to 1 that

‖b−1(z)‖ = |βz0(z)|−1 =

∣∣∣∣1− z0z

z0 − z

∣∣∣∣ ≤ 1 + ε

for |z| ≥ r. This can be seen from the properties of the pseudohyperbolic

distance as described in [5, Chapter I.1]. Since A is contractive by assumption

this implies

‖b−1(z)A(z)‖ ≤ 1 + ε

for |z| ≥ r. Because the norm of an analytic mvf is subharmonic (see the

appendix for a proof of this), we conclude by the maximum principle (see [5,

Theorem I.6.3]) that this estimate holds also for |z| < r. As ε was arbitrary,

we obtain ‖b−1(z)A(z)‖ ≤ 1 for every z ∈ D.

Using the alternative formulation (3.3) for b, the detachability condition

(3.5) becomes

ImA(z0) ⊆ kerP (3.6)

or equivalently, ImA(z0) ⊥ ImP . If we also require the rank r of P to be

maximal, the condition becomes

ImA(z0) = kerP (3.7)

so the B.P. factor is in that case uniquely determined.

We are now ready to prove the main result of this section.

Theorem 3.6. Given A ∈ S, there exists a B.P. product B and Ã ∈ S
without zeros, such that A = B · Ã.

Moreover, B is uniquely determined up to multiplication with a constant

unitary matrix.

The uniqueness statement says that B is uniquely determined as a func-

tion on D, not as a formal product. That is, the individual B.P. factors may

be quite different depending on the order in which we detach the zeros.

33



3.1 Blaschke-Potapov products

Proof of existence. Let z1, z2, . . . be the zeros of detA in no particular

order, counted according to their multiplicities. Let 0 ≤ r < 1. By the

Blaschke condition, there can only be finitely many zeros such that |zi| ≤ r.

We now construct sequences of B.P. factors (bk)k and functions (Ak)k in S
by the following inductive process starting with A0 = A and k = 1:

If detAk−1 has a zero at zk then Ak−1(zk) has defect 0 < rk ≤ n and by

singular value decomposition we obtain

Ak−1(zk) = Uk

(
0 0

0 D

)
Vk (3.8)

where D is a (n − rk) × (n − rk) diagonal matrix with non-zero entries and

Uk and Vk are unitary matrices. Now set

bk(z) = Uk

(
βzk(z)Irk 0

0 In−rk

)
U−1
k and Ak(z) = b−1

k (z)Ak−1(z) (3.9)

for z ∈ D. By Lemma 3.5, this effects the detachability of b−1
k from Ak−1, so

Ak ∈ S.

Now we continue from the start with k + 1 instead of k, where we skip

those k such that detAk−1(zk) 6= 0, which may happen since the individual

zeros occur as often as their multiplicity dictates. From the equation

detAk(z) = βzk(z)rk detAk−1(z)

we see that each zero zi will be “consumed” eventually, i.e. there exists

N = N(i) such that detAk(zi) 6= 0 for k ≥ N . Also, the process will end after

finitely many steps if and only if there are finitely many zeros. In the case

of infinitely many zeros, we know from Theorem 3.4 that Bk(z) =
∏k

i=1 bi(z)

will converge to a B.P. product B. We claim that also the sequence (Ak)k

converges to a bounded analytic function Ã. For the proof note that (3.9)
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3.1 Blaschke-Potapov products

implies

Ak(z) =

(
x∏k

i=1
bi(z)−1

)
A(z)

Also a calculation shows that for |z| ≤ r < 1

‖I−bk(z)−1‖ =

∣∣∣∣1− 1− wz
w − z

w

|w|

∣∣∣∣ =

∣∣∣∣ w + z|w|
w|w| − z|w|

∣∣∣∣ (1−|w|) ≤ 1

1− r
·(1−|w|)

where w = zk 6= 0. Hence we can apply Theorem 3.3 to conclude convergence

of the partial products Ak against a function Ã ∈ S which satisfies A =

B · Ã.

To prove uniqueness we require the following observation.

Lemma 3.7. Let A,A1, A2 ∈ S satisfy A(z) = A1(z)A2(z). Furthermore,

suppose that detA1 has a zero at z0 ∈ D and detA2(z0) 6= 0. Let b be

a Blaschke-Potapov factor for z0, which is detachable from A in the sense

defined above. Then it is also detachable from A1.

Proof. The claim follows from Lemma 3.5 and

U∗A1(z0) =

(
0r 0

∗ ∗

)
A−1

2 (z0) =

(
0r 0

∗ ∗

)

Now we can complete the proof of Theorem 3.6.

Proof of uniqueness. Suppose that

A = B(1) · Ã(1) = B(2) · Ã(2)

are two factorizations such that for i = 1, 2, B(i) is a B.P. product and Ã(i)

a contractive analytic mvf with non-vanishing determinant. Without loss of

generality we write

B(i)(z) =
∞∏
j=1

b
(i)
j (z) and B

(i)
k (z) =

k∏
j=1

b
(i)
j (z) (z ∈ D)
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3.1 Blaschke-Potapov products

for i = 1, 2, where the b
(i)
j are B.P. factors. In case the B(i) come with

constant unitary right factors, we can include those in the Ã(i). Clearly, b
(2)
k+1

is detachable from

B
(2)
k (z)−1B(2)(z) =

∞∏
j=k+1

b
(2)
j (z)

By Lemma 3.7, it is also detachable from

B
(2)
k (z)−1B(1)(z) = B

(2)
k (z)−1B(2)(z)Ã(2)(z)Ã(1)(z)−1

Letting k → ∞ we obtain that F = (B(2))−1B(1) ∈ S. By symmetry, also

F−1 = (B(1))−1B(2) is contractive. Hence we have I − F (z)−1F ∗(z)−1 ≥ 0

for z ∈ D, so also

0 ≤ F (z)(I − F (z)−1F ∗(z)−1)F ∗(z) = F (z)F ∗(z)− I

But at the same time we know I − F (z)F ∗(z) ≥ 0, so F must be unitary

everywhere in D. By Corollary A.6 in the appendix, F is a constant unitary

matrix. This concludes the proof of Theorem 3.6.

3.1.3 Finite B.P. products

A consequence of the above factorization is the following characterization of

finite B.P. products which turns out to be the same as in the scalar case.

Lemma 3.8. A mvf A ∈ S is a finite Blaschke-Potapov product if and only

if it extends continuously to D and takes unitary values on T.

Proof. Suppose that A ∈ S extends continuously to D and takes unitary

values on T. The Blaschke condition implies that detA has only finitely many

zeros, since otherwise they would accumulate at some point on T, which is

impossible because ‖A‖ = 1 on the unit circle. By Theorem 3.6 there exists

a finite Blaschke-Potapov product B and Ã ∈ S such that A = B · Ã and

det Ã is non-vanishing. Hence also Ã−1 ∈ S and Ã−1 = B−1 ·A also extends

continuously to D with unitary values on T. In particular, ‖Ã−1(z)‖ = 1
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3.1 Blaschke-Potapov products

for z ∈ T. By the maximum principle for subharmonic functions, Ã−1 is

contractive. Summarizing, we have for arbitrary z ∈ D

I − Ã(z)Ã∗(z) ≥ 0 and I − Ã(z)−1(Ã∗(z))−1 ≥ 0

whence it follows that Ã is unitary at z. This implies that Ã is equal to

a constant unitary matrix which proves the claim. The other implication

follows directly from the definition of a B.P. factor.

3.1.4 B.P. products for n = 2

In the case of 2 × 2 matrices, the B.P. factors can have only rank 1 or 2.

B.P. factors of rank 2 are just scalar Blaschke factors times the identity

matrix. Thus we can factor out a maximal scalar Blaschke product to obtain

a function which has only zeros of rank 1.

Lemma 3.9. Let n = 2 and A ∈ S. Assume that A has no zeros of rank 2.

Let z1, z2, . . . be an enumeration of the zeros of A counted with multiplici-

ties. Then there exist uniquely determined B.P. factors b1, b2, . . . and Ã ∈ S
without zeros such that bk(zk) = 0 and

A =
N∏
k=1

bk(z) · Ã(z)

where N ∈ N ∪ {∞} is the number of zeros (including multiplicities).

This is clear in view of the above. In fact, condition (3.7) allows for the

bk to be expressed explicitly: Let

bk(z) = I − Pk + βzk(z)Pk

be the kth B.P. factor and Ak be recursively given by

A1(z) = A(z) and Ak+1(z) = b−1
k (z)Ak(z) for k ≥ 1

Then bk is determined by kerPk = ImAk(zk).

37



3.2 Multiplicative representation

3.2 Multiplicative representation

The key ingredient for obtaining a multiplicative representation of a con-

tractive analytic matrix function with non-vanishing determinant will be the

following approximation theorem. The proof is from [7, Chapter V].

Theorem 3.10. For every A ∈ S there exists a sequence of rational con-

tractive mvfs (Ak)k≥1, unitary on T, such that Ak converges to A uniformly

on compact sets in D as k →∞.

By a rational mvf, we mean a matrix-valued functions the entries of which

are scalar rational functions. Combined with Lemma 3.8, this theorem im-

plies that every contractive analytic matrix function can be uniformly ap-

proximated by finite Blaschke-Potapov products.

Proof. We may choose a constant w ∈ C with |w| = 1 such that det(wI −
A(0)) 6= 0 since A(0) can have at most n distinct eigenvalues. This implies

that the holomorphic function det(wI − A(z)) is not identically zero, so the

matrix wI − A(z) is regular for all but countably many points (µj)j in D.

Thus we may define a (possibly meromorphic) mvf by

T (z) = i(wI − A(z))−1(wI + A(z)) (3.10)

This transformation is a matrix-valued analogue of a conformal mapping

from the unit disk to the upper half plane which is sometimes referred to as

Cayley transform. The inverse transformation is given by

A(z) = w(T (z)− iI)(T (z) + iI)−1 (3.11)

A calculation shows

ImT (z) = (wI − A(z))−1(I − A(z)A∗(z))(wI − A∗(z))−1 ≥ 0

because I − A(z)A∗(z) ≥ 0 by assumption. By the open mapping principle,

we know that a scalar meromorphic function that maps onto the upper-half

plane is actually holomorphic. The same holds for meromorphic mvfs with
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3.2 Multiplicative representation

non-negative imaginary part, because the diagonal entries are scalar functions

mapping onto the upper-half plane and and the off-diagonal entries can be

bounded in terms of diagonal entries. Consequently, the singularities (µj)j

are removable and T is holomorphic. By the Herglotz representation theorem

(see the appendix for a proof of this theorem) we can write T as

T (z) = T0 + i

∫ 2π

0

eit + z

eit − z
dσ(t)

where T0 is a constant Hermitian matrix and σ an increasing mvf. This

integral representation allows us to approximate T uniformly by Riemann-

Stieltjes sums.

Choose 0 < rk < 1 for k = 1, 2, . . . such that rk ↗ 1 as k →∞ and none

of the points µj lies on any of the circles {z : |z| = rk}. For each k = 1, 2, . . .

we also pick an appropriate subdivision 0 ≤ t
(k)
0 ≤ t

(k)
1 ≤ · · · ≤ t

(k)
mk = 2π of

the interval [0, 2π] such that the Riemann-Stieltjes sum

Tk(z) = T0 + i

mk−1∑
ν=0

eit
(k)
ν + z

eit
(k)
ν − z

(σ(t
(k)
ν+1)− σ(t(k)

ν )) (3.12)

satisfies the estimate

‖T (z)− Tk(z)‖ ≤ 1

k
for all |z| ≤ rk (3.13)

By construction, the rational functions (Tk)k are holomorphic on D and

converge to T uniformly on compact sets. The meromorphic function

T (z) + iI = 2iw(wI − A(z))−1 (3.14)

is only singular at the points (µj)j. Hence det(Tk(z)+ iI) can at most vanish

at countably many points for large enough k. Thus it makes sense to define

Ak(z) = w(Tk(z)− iI)(Tk(z) + iI)−1 (3.15)
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From (3.12) we see that

ImTk(z) =

mk−1∑
ν=0

1− |z|2

|eit(k)ν − z|
(σ(t

(k)
ν+1)− σ(t(k)

ν )) (3.16)

which implies ImTk(z) ≥ 0. It follows that

I − Ak(z)A∗k(z) = 4(Tk(z) + iI)−1 · ImTk(z) · (T ∗k (z)− iI)−1 ≥ 0

so Ak is a rational contractive mvf which has no poles in D. Also, (3.16)

implies that Ak(z) is unitary for |z| = 1. We claim that Ak converges to A

uniformly on compact sets. To prove this, let K ⊂ D be compact and N

large enough such that K is contained in the disk |z| ≤ rN . By choice of the

(rk)k we may select a δ > 0 such that none of the singularities (µj)j lie in

the annulus R = {z : rN − δ ≤ |z| ≤ rN + δ} ⊂ D. Then, by the identity

A(z)− Ak(z) = 2i(T (z) + iI)−1(T (z)− Tk(z))(Tk(z) + iI)−1

and using (3.13), (3.14) we obtain

‖A(z)− Ak(z)‖ ≤ 2

k
· ‖(Tk(z)− iI)−1‖ (3.17)

for z ∈ R and k so large that Tk(z)−iI is invertible inR and {z : |z| ≤ rk} ⊃ R.

Since Tk(z)−iI converges uniformly to T (z)−iI, the matrix norm ‖Tk(z)−iI‖
is bounded uniformly in k and z. By the matrix norm estimate ‖A−1‖ ≤ ‖A‖n−1

| detA|

(see the appendix for a proof of this) it follows that

‖(Tk(z)− iI)−1‖ ≤ C0

| det(Tk(z)− iI)|
(3.18)

for some large enough C0 > 0. Since det(Tk(z) − iI) 6= 0 in R for large

enough k and also det(T (z)− iI) 6= 0 in R we can infer that | det(Tk(z)− iI)|
is bounded from below by some positive constant. Combining this with (3.17)
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and (3.18) we get

‖A(z)− Ak(z)‖ ≤ C

k
(3.19)

for some large enough C > 0 and z ∈ R. From Lemma A.4 and the maximum

principle for subharmonic functions we conclude that (3.19) holds throughout

{z : |z| ≤ rN + δ} ⊃ K.

We will now describe how to obtain the multiplicative representation,

proceeding as in [7, Introduction, Chapter V]. Let A ∈ S have no zeros.

Applying Theorem 3.10 and Lemma 3.8, we can choose a sequence

Ak(z) = b
(k)
1 (z)b

(k)
2 (z) · · · b(k)

mk
(z)Uk (3.20)

where the b
(k)
j , 1 ≤ j ≤ mk are B.P. factors and the Uk unitary matrices,

such that Ak → A uniformly on compact subsets. Let also

b
(k)
j (z) = U

(k)
j

 β
z
(k)
j

(z)I
r
(k)
j

0

0 I
n−r(k)j

 (U
(k)
j )∗ (3.21)

with U
(k)
j unitary and2 z

(k)
j = ρ

(k)
j eiθ

(k)
j , j = 1, 2, . . . ,mk with ρ

(k)
j > 0 and

0 ≤ θ
(k)
j < 2π. We may assume that the z

(k)
j are arranged in order of

increasing θ
(k)
j . Now define

H
(k)
j = U

(k)
j

(
(1− |z(k)

j |)Ir(k)j
0

0 0

)
(U

(k)
j )∗ (3.22)

Notice that ‖H(k)
j ‖ = 1− |z(k)

j |. Now (3.1), (3.21) and (3.22) imply

b
(k)
j (z) = I −

z
(k)
j + |z(k)

j |z
z

(k)
j − |z

(k)
j |2z

H
(k)
j (3.23)

The sequence (detAk(0))k converges, hence it is bounded by some constant

2We tacitly suppose that z
(k)
j 6= 0. This is true anyway for large enough k.
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L > 0. Since
mk∏
ν=1

|z(k)
ν |r

(k)
ν = detAk(0)

there exists a constant C > 0 such that

mk∑
ν=1

(1− |z(k)
ν |) ≤ C (3.24)

We would like to write the right hand side of (3.20) as a multiplicative

integral. However, this is not possible because multiplicative integrals are

invertible everywhere while detAk(z) has zeros. To remedy this situation,

we consider the modified factors

b̃
(k)
j (z) = exp

(
−e

iθ
(k)
j + z

eiθ
(k)
j − z

H
(k)
j

)
= exp(hz(θ

(k)
j )H

(k)
j ) (3.25)

and accordingly

Ãk(z) = b̃
(k)
1 (z) · · · b̃(k)

mk
(z)Uk (3.26)

We now show that the non-vanishing of detA implies that we may work with

Ãk instead.

Lemma 3.11. With Ak, Ãk given as above, we have that ‖Ak − Ãk‖ → 0

uniformly on compact sets in D.

Proof. Let 0 < r < 1 and let k be large enough such that none of the points

(z
(k)
j )j lie in the disk {z : |z| ≤ r}. By (3.23) we can estimate

‖b(k)
j (z)‖ ≤ 1 +

1 + r

1− r
‖H(k)

j ‖ ≤ e
1+r
1−r ‖H

(k)
j ‖ = e

1+r
1−r (1−|z(k)j |) (3.27)

for |z| ≤ r. The same conclusion holds with b
(k)
j replaced by b̃

(k)
j . Now the

telescoping identity from Lemma 2.15 implies via (3.27) and (3.24) that

‖Ak(z)− Ãk(z)‖ = eC
1+r
1−r

mk∑
ν=1

‖b(k)
ν (z)− b̃(k)

ν (z)‖ (3.28)
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for |z| ≤ r. Define

c
(k)
j (z) = I − eiθ

(k)
j + z

eiθ
(k)
j − z

H
(k)
j

We write

‖b(k)
j (z)− b̃(k)

j (z)‖ ≤ ‖b(k)
j (z)− c(k)

j (z)‖+ ‖c(k)
j (z)− b̃(k)

j (z)‖

and estimate the two differences separately. First,

‖b(k)
j (z)− c(k)

j (z)‖ =

∣∣∣∣ eiθ + z

eiθ − ρz
− eiθ + z

eiθ − z

∣∣∣∣ · ‖H(k)
j ‖

≤ 2
1− ρ

(1− r)2
‖H(k)

j ‖ = 2

(
1− |z(k)

j |
1− r

)2

(3.29)

where ρ = ρ
(k)
j = |z(k)

j |, θ = θ
(k)
j and |z| ≤ r. Secondly,

‖c(k)
j (z)− b̃(k)

j (z)‖ =

∥∥∥∥∥
∞∑
ν=2

(hz(θ
(k)
j )H

(k)
j )ν

ν!

∥∥∥∥∥ ≤
∞∑
ν=2

1

ν!

(
1 + r

1− r

)ν
‖H(k)

j ‖ν

≤ 4eC
1+r
1−r

(
1− |z(k)

j |
1− r

)2

(3.30)

where |z| ≤ r. Setting

M = M(r) =
2

(1− r)2
· eC

1+r
1−r max{1, 2eC

1+r
1−r }

and applying (3.29), (3.30) to (3.28), we see

‖Ak(z)− Ãk(z)‖ ≤M

mk∑
ν=1

(1− |z(k)
ν |)2 ≤ CM max

ν=1,...,mk
(1− |z(k)

ν |) (3.31)

in the disk {z : |z| ≤ r}. Since Ak → A and detA has no zeros in D, the

right hand side of (3.31) converges to 0 as k →∞.

Now we will write (3.26) as a multiplicative Stieltjes integral on some

43



3.2 Multiplicative representation

interval [0, L]. Define t
(k)
0 = 0 and

t
(k)
j =

j∑
ν=1

tr H(k)
ν for j = 1, . . . ,mk (3.32)

From (3.32) and (3.22) we see

t
(k)
j ≤

mk∑
ν=1

r(k)
ν (1− |z(k)

ν |) <
mk∏
ν=1

|z(k)
ν |r

(k)
ν = detAk(0) ≤ L

Finally, we define

E(k)(t) =


∑j−1

ν=1H
(k)
ν +

t−t(k)j−1

t
(k)
j −t

(k)
j−1

H
(k)
j , if t

(k)
j−1 ≤ t < t

(k)
j for some j = 1, . . . ,mk∑mk

ν=1 H
(k)
ν , if t

(k)
mk ≤ t ≤ L

(3.33)

θ(k)(t) = θ
(k)
j for t

(k)
j−1 ≤ t < t

(k)
j and θ(k)(t) = θ(k)

mk
for t(k)

mk
≤ t ≤ L

(3.34)

E(k) is chosen such that it is an increasing mvf on [0, L] and the equation

tr E(k)(t) = t

is satisfied for t ∈ [0, tmk ]. Note also that for 0 ≤ s ≤ t ≤ L we have

‖E(k)(t)− E(s)(s)‖ ≤ tr (E(k)(t)− E(k)(s)) ≤ t− s

so E(k) is Lipschitz continuous. The function θ(k) : [0, L]→ [0, 2π) is increas-

ing and right-continuous. Thus, hz(θ
(k)(t)) is Riemann integrable on [0, L]

as a function of t. By Proposition 2.6, (3.25) and (3.33) we can write

b̃
(k)
j (z) =

y∫ t
(k)
j

t
(k)
j−1

exp

(
hz(θ

(k)(t))

t
(k)
j − t

(k)
j−1

H
(k)
j dt

)
=

y∫ t
(k)
j

t
(k)
j−1

exp
(
hz(θ

(k)(t)) dE(k)(t)
)

for j = 1, . . . ,mk. We write all the factors on the right hand side of (3.26)
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in a single multiplicative integral using Proposition 2.5 to obtain

Ãk(z) =

y∫ L

0

exp
(
hz(θ

(k)(t)) dE(k)(t)
)

(3.35)

Now we apply Helly’s selection Theorem 2.18 twice to extract a common

subsequence such that both, (E(kj))j and (θ(kj))j, converge to respective limit

functions E and θ. Then E is an increasing mvf with ‖E(t)−E(s)‖ ≤ t− s
for t ≥ s. Moreover, θ is a bounded increasing function. In particular, it has

only countably many discontinuities. Thus hz(θ(t)) is Riemann integrable

in t on [0, L]. By Helly’s convergence theorem for multiplicative integrals

(Theorem 2.17) we conclude that

lim
j→∞

Ãkj(z) =

y∫ L

0

exp(hz(θ(t)) dE(t))

But by Lemma 3.11, Ãkj(z) converges also to A(z). Consequently,

A(z) =

y∫ L

0

exp(hz(θ(t)) dE(t))

Should θ not be right-continuous we can change its values at the discon-

tinuities such that it will be right-continuous. Since this changes θ only at

countably many places, the value of the integral stays the same.

We have obtained the desired multiplicative representation and thereby

finished the proof of Theorem 3.1.

4 Inner-outer factorization

4.1 Existence

The inner-outer factorization of a bounded analytic matrix-valued function

was discovered by Y.P. Ginzburg in [6], where he also indicates the basic

steps for the proof. It should be noted that these factorization theorems can

be achieved in a much more general setting without the use of multiplicative
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4.1 Existence

integrals. This was done for example by Sz.-Nagy and Foias in [13]. However,

their treatment is quite abstract and our goal here are specifically the explicit

multiplicative representations.

Let us first remark that for a bounded analytic matrix function A, it

makes sense to speak of its values almost everywhere on the circle, defined

for instance radially by

A(eiθ) = lim
r→1−

A(reiθ)

This limit exists for a.e. θ ∈ [0, 2π) since the components of A are bounded

analytic scalar functions. We will denote the radial limit function also by A.

Definition 4.1. A function A ∈ H∞ is called inner, if A is unitary almost

everywhere on T. An inner function without zeros is a singular inner func-

tion.

By the maximum principle for subharmonic functions applied to ‖A‖,
inner functions are contractive.

In the scalar case, we can split up singular inner functions further with

respect to the decomposition of the corresponding singular measure into pure

point and singular continuous components. In the matrix-valued case this

leads to the following definitions.

Definition 4.2. A mvf A ∈ H∞ is called pp-inner (short for pure point

inner), if there exist a unitary constant U , m ∈ N∪{∞}, lk > 0, θk ∈ [0, 2π)

and increasing mvfs Ek with tr Ek(t) = t such that

A(z) = U

m∏
k=1

y∫ lk

0

exp(hz(θk) dEk(t)) (4.1)

for z ∈ D.

A pp-inner function is inner. It suffices to check this for the case that

A(z) =
y∫ l

0
exp(hz(θ) dE(t)) for a constant θ ∈ [0, 2π) and an increasing mvf
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4.1 Existence

E. By Proposition 2.9 we have

A(z)A∗(z) =

y∫ l

0

exp(2Rehz(θ) dE(t))

Set z = reiϕ. If ϕ 6= θ, then limr→1−Rehz(θ) = 0. Therefore, the radial limit

A(eiϕ) is unitary.

We call a mvf singular continuous if it is nonconstant, continuous, in-

creasing and has derivative 0 almost everywhere.

Definition 4.3. A mvfA ∈ H∞ is called sc-inner (short for singular continuous-

inner), if there exist a unitary constant U and a singular continuous mvf S

such that

A(z) = U

y∫ 2π

0

exp(hz(ϕ)dS(ϕ)) (4.2)

for z ∈ D.

Let us check that an sc-inner function is really an inner function. Apply-

ing Proposition 2.9 and Proposition 2.11 we have

A(z)A∗(z) = I + 2

∫ 2π

0

Rehz(ϕ)dS(ϕ) +R

where the error term R satisfies the estimate (2.10). But∥∥∥∥∫ 2π

0

Rehz(ϕ)dS(ϕ)

∥∥∥∥ ≤ ∫ 2π

0

|Rehz(ϕ)|d|S|(ϕ)

The estimate (2.27) applied to S gives∫ 2π

0

|Rehz(ϕ)|d|S|(ϕ) ≤
∫ 2π

0

|Rehz(ϕ)|dtr S(ϕ)

Combining the last three estimates with (2.10) we get

‖I − A(z)A∗(z)‖ ≤ exp

(∫ 2π

0

|Rehz(ϕ)|dtr S(ϕ)

)
− 1 (4.3)
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4.1 Existence

Now notice that tr S is a scalar singular continuous function. Set z = reiθ.

By the scalar theory (compare [9]), the left hand side of (4.3) converges to

0 for almost every θ as r approaches 1. We conclude that sc-inner functions

are really inner functions.

Definition 4.4. We call A ∈ H∞ outer if

A(z) = U

y∫ 2π

0

exp(hz(ϕ)M(ϕ) dϕ) (4.4)

where U is a unitary constant and M ∈ L1([0, 2π];Mn) a Hermitian mvf,

whose least eigenvalue is bounded from below.

Later, we will give equivalent characterizations for outer functions. Let

us remark that all these definitions agree in the case n = 1 with the corre-

sponding scalar concepts.

Our goal is a canonical factorization of any A ∈ H∞ into a B.P. product,

a pp-inner, an sc-inner and an outer function. To achieve this, we will ma-

nipulate the multiplicative integral representation obtained from Potapov’s

fundamental Theorem 3.1. We need two lemmas.

The first one says roughly that we can commute two functions in S as

long as we only care about their determinants. This was given by Ginzburg,

but unfortunately he did not provide a proof.

Lemma 4.1. Let A1, A2 ∈ S. Then there exist Ã1, Ã2 ∈ S such that

A1 · A2 = Ã2 · Ã1

and detAj = det Ãj for j = 1, 2.

Proof. By Theorem 3.10 and Lemma 3.8, we can choose a sequence of finite

B.P. products

A
(k)
2 (z) = b

(k)
1 (z) · · · b(k)

mk
(z)

such that A
(k)
2 converges to A2 uniformly on compact sets. Let us assume

without loss of generality that A1 and A
(k)
2 have no common zeros. From
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4.1 Existence

the mvf A1A
(k)
2 , we detach a B.P. product corresponding to the zeros of A

(k)
2

which we call Ã
(k)
2 . That is, we obtain

A1A
(k)
2 = Ã

(k)
2 Ã

(k)
1 (4.5)

where Ã
(k)
2 is a finite B.P. product such that detA

(k)
2 = det Ã

(k)
2 and Ã

(k)
1 ∈

S the remainder. By Montel’s theorem (see Theorem A.7), there exists a

subsequence (Ã
(ki)
2 )i which converges on compact sets to some analytic mvf

Ã2. We also get Ã2 ∈ S and det Ã2 = detA2. The identity (4.5) implies that

also Ã
(km)
1 converges to some Ã1 ∈ S with detA1 = det Ã1.

The next lemma says that the angular function θ in Potapov’s multiplica-

tive representation (3.4) is already determined by detA. The point of the

proof is to use uniqueness of the measures in the scalar inner-outer factor-

ization.

Lemma 4.2. Suppose that A ∈ S and

detA(z) = exp

(∫ L

0

hz(θ(t))dt

)
(4.6)

for z ∈ D, where L > 0 and θ : [0, L] → [0, 2π] is a right-continuous,

increasing function. Then

A(z) = U

y∫ L

0

exp(hz(θ(t))dE(t))

for some unitary constant U with detU = 1 and an increasing mvf E with

tr E(t) = t.

Proof. By Potapov’s Theorem 3.1 we know that

A(z) = U

y∫ L̃

0

exp(hz(θ̃(t))dE(t)) (4.7)

for a right-continuous, increasing function θ̃ and an increasing mvf E with
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4.1 Existence

tr E(t) = t. Taking the determinant we see

detA(z) = det(U) exp

(∫ L̃

0

hz(θ̃(t))dt

)
(4.8)

Plugging in the value z = 0 and comparing with (4.6) yields detU = 1 and

L̃ = L. Now it suffices to show that θ in the representation (4.6) is uniquely

determined.

By a change of variables we get∫ L

0

hz(θ(t)) dt =

∫ 2π

0

hz(ϕ) dθ†(ϕ) (4.9)

where θ† is the left-continuous generalized inverse of θ given by θ†(ϕ) =

inf{t ∈ [0, L] : θ(t) ≥ ϕ}. Let µ be the unique positive Borel measure such

that
∫ 2π

0
f(ϕ)dθ†(ϕ) =

∫ 2π

0
f(ϕ)dµ(ϕ) for all continuous functions f . Note

that the map θ 7→ θ† 7→ µ is injective.

But by the scalar inner-outer factorization we know that the measure µ

in

detA(z) = exp

(∫ 2π

0

hz(ϕ)dµ(ϕ)

)
is uniquely determined (see [5], [9]). Therefore also θ in (4.6) is uniquely

determined.

Corollary 4.3. Let A ∈ S and assume

detA(z) = exp

(∫ 2π

0

hz(ϕ)dψ(ϕ)

)
for some continuous increasing function ψ. Then

A(z) = U

y∫ 2π

0

exp(hz(ϕ)dE(ψ(ϕ))

for some unitary constant U with detU = 1 and an increasing mvf E satis-

fying tr E(t) = t.
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4.1 Existence

Proof. Since ψ is continuous, it is the generalized inverse of some right-

continuous and strictly increasing θ. Changing variables, applying Lemma

4.2 and changing variables again yields the claim.

The following observation lies in the same vein.

Lemma 4.4. Let A ∈ S. Then A is outer (resp. sc-inner) if and only if

detA is outer (resp. sc-inner).

Proof. If A is outer or sc-inner, respectively, then detA is by the determinant

formula also outer or sc-inner, respectively.

If on the other hand detA is outer or sc-inner, respectively, then we find

detA(z) = c · exp

(∫ 2π

0

hz(ϕ) dψ(ϕ)

)
with |c| = 1 and ψ being an absolutely continuous or singular continuous

increasing function, respectively. Therefore we can conclude by Corollary 4.3

that

A(z) = U exp

(∫ 2π

0

hz(ϕ) dE(ψ(ϕ))

)
where U is a unitary constant and E an increasing mvf satisfying tr E(t) = t.

Note that E is Lipschitz continuous, because for t ≥ s we have

‖E(t)− E(s)‖ ≤ tr (E(t)− E(s)) = t− s

It follows that if ψ is absolutely continuous, then also E ◦ ψ is absolutely

continuous. On the other hand, if ψ is singular continuous, then E ◦ψ is also

singular continuous. That is, A is outer or sc-inner, respectively.

Now we can proceed to proving Theorem 1.1. In the first step we show

how to detach the pp-inner factor.

Lemma 4.5. Let A ∈ S and assume that A has no zeros. Then there exists
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4.1 Existence

a pp-inner function Spp and a continuous increasing mvf Σ such that

A(z) = Spp(z) ·
y∫ 2π

0

exp(hz(ϕ)dΣ(ϕ)) (4.10)

for all z ∈ D.

Proof. By Potapov’s Theorem 3.1

A(z) = U

y∫ L

0

exp (hz(θ(t)) dE(t)) (4.11)

where U is a unitary constant, and E,L, θ are as stated in that theorem. Let

{(ak, bk) : k = 1, . . . ,m} with m ∈ N∪{∞} be a complete enumeration of all

the intervals on which θ is constant and let θk be the value of θ on the interval

(ak, bk). The length of the kth interval will be denoted by `k = bk − ak. For

any increasing function ψ, we denote the total length of intervals on which

ψ is constant by `(ψ). That is, `(θ) =
∑m

i=1 `i. Note that `(θ) ≤ L <∞.

We inductively construct sequences (Sj)j, (Aj)j of contractive mvfs such

that S0 = I, A0 = A, Sj · Aj = A and

Sj(z) =

j∏
i=1

y∫ `i

0

exp(hz(θi)dEi(t)), Aj(z) = Uj

y∫ Lj

0

exp(hz(θ
(j)(t))dFj(t))

(4.12)

for j ≥ 1 with Uj unitary constants, Lj = L −
∑j−1

i=1 `i, θ
(j) increasing

functions and Fj, Ej increasing mvfs satisfying tr Ej(t) = tr Fj(t) = t.

We also want the intervals of constancy of θ(j) to have exactly the lengths

`j+1, `j+2, . . . , `m and that θ(j) assumes the values θj+1, θj+2, . . . , θm on them,

respectively.

Let 0 ≤ k < m and assume we have constructed Aj, Sj already for all

0 ≤ j ≤ k. Then Ak has an interval of constancy of length `k+1, say (a, b).
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4.1 Existence

We rewrite Ak as

Ak(z) =

y∫ a

0

ehz(θ(k)(t))dFk(t) ·
y∫ b

a

ehz(θk+1)dFk(t) ·
y∫ Lk

b

ehz(θ(k)(t))dFk(t)

By Lemma 4.1, we can interchange the first two factors while preserving

their determinants. Using Lemma 4.2 and Proposition 2.8 on the modified

factors yields

Ak(z) =

y∫ `k+1

0

ehz(θk+1)dG(t) · Ũ ·
y∫ a

0

ehz(θ(k)(t))dH(t) ·
y∫ Lk

b

ehz(θ(k)(t))dFk(t) (4.13)

where Ũ is a unitary constant with det Ũ = 1 and G,H are increasing mvfs

with tr G(t) = tr H(t) = t. Now we define Ek+1 = G and define Sk+1 as

prescribed in (4.12). Also set

Ak+1(z) = Ũ ·
y∫ a

0

ehz(θ(k)(t))dH(t) ·
y∫ Lk

b

ehz(θ(k)(t))dFk(t) (4.14)

Now it remains to check that Ak+1 has the form prescribed in (4.12). Com-

puting the determinant gives

detAk+1(z) = exp

(∫ a

0

hz(θ
(k)(t))dt+

∫ Lk

b

hz(θ
(k)(t))dt

)
= exp

(∫ Lk+1

0

hz(θ
(k+1)(t))dt

)
where we have set Lk+1 = Lk − b+ a and

θ(k+1)(t) =

{
θ(k)(t), for t ∈ [0, a)

θ(k)(t+ b− a), for t ∈ [a, Lk+1]

By Lemma 4.2, Ak+1 can be written as

Ak+1(z) = Uk+1

y∫ Lk+1

0

exp(hz(θ
(k+1)(t))dFk+1(t))
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4.1 Existence

where Uk+1 is a unitary constant and Fk+1 an increasing mvf with tr Fk+1(t) = t.

If m < ∞, then this process terminates after m steps. Then A = SmAm

is the desired factorization up to the unitary constants Uk which we can pull

up to the front using Proposition 2.8. So from now on we assume m = ∞.

We claim that the infinite product

S∞(z) =
∞∏
i=1

y∫ `i

0

exp(hz(θi)dEi(t))

converges. To verify that, we invoke Theorem 3.3. Condition (b) is trivially

satisfied because all the factors are contractive mvfs. Denote the factors by

Bi(z) =
y∫ `i

0
exp(hz(θi)dEi(t)). To check condition (a), we write

Bi(z) = I +

∫ `i

0

hz(θi)dEi(t) +Ri

where the remainder term Ri satisfies (2.10). Suppose that K ⊂ D is com-

pact. Then there is C > 0 such that 1+r
1−r ≤ C for all z = reiϕ ∈ K. Now

estimate ∥∥∥∥∫ `i

0

hz(θi)dEi(t)

∥∥∥∥ ≤ ∫ `i

0

|hz(θi)|dt ≤ C`i

Let N be large enough such that C`i ≤ 1 for all i ≥ N . Then Ri ≤ C2`2
i for

i ≥ N and

∞∑
i=N

‖I −Bi(z)‖ ≤
∞∑
i=N

∫ `i

0

|hz(θi)|dt+Ri ≤
∞∑
i=N

C`i + C2`2
i <∞

because
∑∞

i=1 `i ≤ L <∞ converges. This proves the prerequisites of Theo-

rem 3.3. Therefore (Sk)k converges uniformly on compact sets to the pp-inner

function S∞.

Therefore also Ak = S−1
k A converges to a contractive mvf A∞ = S−1

∞ A.
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Applying the determinant formula gives

detA∞(z) = (detS∞(z))−1 detA(z) (4.15)

= c · exp

(
−
∞∑
i=1

`ihz(θi) +

∫ L

0

hz(θ(t))dt

)
(4.16)

where |c| = 1.

As in the proof of Lemma 4.2 we write∫ L

0

hz(θ(t))dt =

∫ 2π

0

hz(ϕ)dµ(ϕ) (4.17)

where µ is the positive Borel measure corresponding to the increasing func-

tion θ†. Decompose µ = µp + µc where µp is a pure point measure and µc

an atomless measure. The pure point component µp is given by the jump

discontinuities of θ† which in turn correspond to the intervals of constancy

of θ the size of the jump being the length of the interval. That is,

µp =
∞∑
i=1

`iδθi (4.18)

where δϕ denotes the Dirac measure at ϕ. Combining (4.16), (4.17), (4.18)

we get

detA∞(z) = c · exp

(∫ 2π

0

hz(ϕ)dµc(ϕ)

)
(4.19)

By Corollary 4.3 we get

A∞(z) = U∞

y∫ 2π

0

exp(hz(ϕ) dΣ(ϕ)) (4.20)

for a unitary constant U∞ and a continuous increasing mvf Σ. After moving

the unitary constant U∞ to the front, A = S∞A∞ is the desired factorization.

Theorem 4.6. Let A ∈ H∞. Then there exist a B.P. product B, a pp-inner
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4.1 Existence

function Spp, an sc-inner function Ssc and an outer function E such that

A(z) = B(z)Spp(z)Ssc(z)E(z) for z ∈ D (4.21)

Proof. Assume without loss of generality that A ∈ S (multiply with a positive

multiple of the identity matrix). The B.P. product can be detached using

Theorem 3.6. Thus we can assume that A has no zeros. Lemma 4.5 reduces

the claim to showing that a contractive mvf A of the form

A(z) =

y∫ 2π

0

exp (hz(ϕ) dΣ(ϕ)) (4.22)

where Σ is a continuous increasing mvf, can be factored into an sc-inner and

an outer function.

To achieve this let us decompose Σ = Σs + Σa where Σs is a singular-

continuous and Σa an absolutely continuous function (see e.g. [12]). By

continuity, we can approximate Σs uniformly by a sequence of step functions

(Tk)k which we may assume to be of the form

Tk =

mk∑
i=1

T
(i)
k 1

(t
(i−1)
k ,t

(i)
k ]

for mk ∈ N, 0 = t
(0)
k < t

(1)
k < · · · < t

(mk)
k = 2π and T

(i)
k Hermitian matrices

such that T
(1)
k = 0 and ∆

(i)
k = T

(i)
k − T

(i−1)
k ≥ 0 for mk ≥ i > 1. Set ∆

(1)
k = 0

for convenience. Let Σ(k) = Tk + Σa.

Then

y∫ t
(i)
k

t
(i−1)
k

ehz(ϕ) dΣ(k)(ϕ) = ehz(t
(i−1)
k )∆

(i)
k

y∫ t
(i)
k

t
(i−1)
k

ehz(ϕ) dΣa(ϕ)

for i = 1, . . . ,mk. This implies

y∫ 2π

0

ehz(ϕ) dΣ(k)(ϕ) =

mk∏
i=1

ehz(t
(i−1)
k )∆

(i)
k

y∫ t
(i)
k

t
(i−1)
k

ehz(ϕ) dΣa(ϕ) (4.23)
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We use Lemma 4.1 to move all the factors ehz(t
(i−1)
k )∆

(i)
k up to the front.

Thereby, we obtain

y∫ 2π

0

ehz(ϕ) dΣ(k)(ϕ) = Sk(z)Ek(z) (4.24)

where Sk, Ek are contractive mvfs satisfying

detEk(z) = exp

(∫ 2π

0

hz(ϕ)dtr Σa(ϕ)

)
and (4.25)

detSk(z) = exp

(
mk∑
i=1

hz(t
(i)
k )tr ∆

(i)
k

)
= exp

(∫ 2π

0

hz(ϕ)dtr Tk(ϕ)

)
(4.26)

By Montel’s theorem, there exists a subsequence (kj)j such that (Skj)j

and (Ekj)j both converge uniformly on compact sets to contractive mvfs S

and E, respectively. Equation (4.25) implies

detE(z) = lim
j→∞

detEkj(z) = exp

(∫ 2π

0

hz(ϕ)dtr Σa(ϕ)

)
(4.27)

Because the trace of an absolutely continuous function is absolutely contin-

uous, detE is an outer function. By Lemma 4.4, also E must be an outer

function.

We also know that tr Tk converges uniformly to tr Σs as k →∞. There-

fore (4.26) gives

detS(z) = lim
j→∞

detSkj(z) = exp

(∫ 2π

0

hz(ϕ)dtr Σs(ϕ)

)
(4.28)

The trace of a singular continuous mvf is singular continuous. Hence Lemma

4.4 shows that S is an sc-inner mvf.

By Helly’s convergence Theorem 2.17, the left hand side of (4.24) con-
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verges to A(z) for all z ∈ D. Therefore we obtain the desired factorization:

A(z) = S(z)E(z) (4.29)

We proceed proving some additional properties of inner and outer func-

tions.

Lemma 4.7. A function A ∈ H∞ that is both inner and outer must be a

unitary constant.

Proof. If A is inner and outer, then also detA is a scalar function which is

inner and outer. Hence detA(z) is a unimodular constant. By Potapov’s

Theorem 3.1, A is given by (3.4). Plugging in the value z = 0 gives

1 = | detA(0)| = exp(−L)

and therefore L = 0.

Theorem 4.8. Let A ∈ H∞. Then A is an inner function if and only if there

exist a B.P. product B, a pp-inner function Spp and an sc-inner function Ssc

such that

A(z) = B(z)Spp(z)Ssc(z) (4.30)

for all z ∈ D.

Proof. We already saw that functions of the form (4.30) are inner. The inner-

outer factorization (4.21) and Lemma 4.7 imply the other direction.

Theorem 4.9. A function A ∈ H∞ is outer if and only if for every B ∈ H∞

with the property B∗(eiθ)B(eiθ) = A∗(eiθ)A(eiθ) for almost every θ ∈ [0, 2π],

we have that

B∗(z)B(z) ≤ A∗(z)A(z) (4.31)

for all z ∈ D.
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4.1 Existence

Ginzburg [6] uses this as the definition of outerness. The condition can

be shown to be equivalent to a Beurling-type definition of outer functions by

invariant subspaces of a certain shift operator (see [13]).

Proof. Suppose that A is an outer function and let B ∈ H∞ be such that

A∗A = B∗B holds a.e. on T.

By Theorems 4.6 and 4.8 we have B = X · E for an inner function X and

an outer function E. Then A∗A = E∗X∗XE = E∗E a.e. on T. Therefore,

Y = A ·E−1 is an inner function. But it is also outer. So A(z) = U ·E(z) for

a unitary constant U . Since X is an inner function, X∗X ≤ I on D. Hence

B∗B = E∗X∗XE ≤ E∗E = A∗A

Note that the proof also shows that outer functions are, up to a unitary

constant, uniquely determined by their radial limit functions.

Theorem 4.10. A mvf A ∈ H∞ is inner (resp. outer) if and only if detA

is a scalar inner (resp. outer) function.

Proof. We already showed the part for outer functions in Lemma 4.4. The

part for inner functions follows similarly using Theorem 4.8.

We still have to show that the factorization (4.21) obtained in Theorem

4.6 is unique.

Theorem 4.11. The functions B, Spp, Ssc, E in Theorem 4.6 are uniquely

determined up to multiplication with a unitary constant.

Proof. Uniqueness of the B.P. product was shown already in Theorem 3.6.

Suppose that

SppSscE = S̃ppS̃scẼ

are two factorizations into pp-inner, sc-inner and outer factors. Then

S̃−1
sc S̃

−1
pp SppSsc = Ẽ · E−1
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4.2 Uniqueness

The left hand side is an inner function and the right hand side an outer

function. By Lemma 4.7, Ẽ(z) = U ·E(z) for some unitary constant U . Now

we have S̃−1
pp Spp = S̃scUS

−1
sc . The left hand side is a pp-inner function and the

right hand side an sc-inner function. This holds also for their determinants.

By the scalar uniqueness, both sides must be unitary constants.

Theorems 4.6 and 4.11 prove the first part of Theorem 1.1.

4.2 Uniqueness

Now we proceed to proving the remaining claim of Theorem 1.1.

Theorem 4.12. Let Ai ∈ H∞, i = 1, 2 with

Ai(z) =

y∫ 2π

0

exp(hz(ϕ)Mi(ϕ)dϕ)

for z ∈ D and Mi Lebesgue integrable Hermitian mvfs. Assume A1 ≡ A2 on

D. Then M1 = M2 almost everywhere on [0, 2π]. That is, the function M

in the representation (4.4) of an outer function is uniquely determined up to

changes on a set of measure zero.

Proof. Set

Ai(z, t) =

y∫ t

0

exp(hz(ϕ)Mi(ϕ)dϕ) and Ãi(z, t) =

y∫ 2π

t

exp(hz(ϕ)Mi(ϕ)dϕ)

for z ∈ D, t ∈ [0, 2π], i = 1, 2. These are outer functions for every fixed t.

Then

A1(z, t)Ã1(z, t) = A1(z, t) = A2(z, t) = A2(z, t)Ã2(z, t)

and consequently

X(z, t) = A2(z, t)−1A1(z, t) = Ã2(z, t)Ã1(z, t)−1 (4.32)

for all z ∈ D, t ∈ [0, 2π]. For every t, X(·, t) is an outer function. But for

every θ ∈ (t, 2π), the radial limit Ai(e
iθ, t) is unitary. Consequently, X(eiθ, t)
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4.2 Uniqueness

is unitary for t ∈ (t, 2π). Likewise, Ãi(e
iθ, t) is unitary for all θ ∈ (0, t).

Together, (4.32) implies that X(eiθ, t) is unitary for almost all θ ∈ [0, 2π], i.e.

X(·, t) is an inner function. Therefore, X(·, t) must be a unitary constant.

That is, there exist unitary matrices U(t) for t ∈ [0, 2π] such that

A1(z, t) = A2(z, t)U(t) (4.33)

for all z ∈ D. Since Ai(0, t) =
y∫ t

0
exp(−Mi(ϕ)dϕ) are positive matrices, U(0)

is also positive, i.e. U(0) = I. So we conclude

y∫ t

0

exp(−M1(ϕ)dϕ) =

y∫ t

0

exp(−M2(ϕ)dϕ) (4.34)

Deriving this equation with respect to t gives

−M1(t)A1(0, t) = −M2(t)A2(0, t) (4.35)

for almost all t ∈ [0, 2π]. Since A1(0, t) = A2(0, t), the assertion follows.

It is natural to ask whether the Ek and S in the representations of pp-

inner and sc-inner functions, respectively, are uniquely determined. The

question for uniqueness of S in the representation of an sc-inner function

remains unresolved for now. For the pp-inner part, the answer is negative.

To see that there is no uniqueness for the Ek let us consider the following.

Example. Let

E1(t) =

(
t2/2 0

0 t− t2/2

)
and E2(t) =

(
t− t2/2 0

0 t2/2

)

for t ∈ [0, 1]. The mvfs E1, E2 are increasing and satisfy tr E1(t) = tr E2(t) =

t. Then
y∫ 1

0

exp

(
z + 1

z − 1
dEi(t)

)
=

(
e

z+1
2(z−1) 0

0 e
z+1

2(z−1)

)
for i = 1, 2, but E1(t) 6= E2(t) for almost all t ∈ [0, 1].
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Despite the apparent non-uniqueness, it turns out that sometimes Ek is

uniquely determined and in fact there exists a criterion to decide when that

is the case [3, Theorem 0.2], [4, Theorem 30.1]. The proof of this however

relies on an elaborate operator theoretic framework, which would lead us too

far astray here.

A Background

In this section we collect some basic facts on matrix norms and analytic

matrix-valued functions.

A.1 Properties of the matrix norm

The matrix norm we use throughout this work is the operator norm given by

‖A‖ = sup
‖v‖=1

‖Av‖

for A ∈ Mn, where ‖v‖ denotes the Euclidean norm of v ∈ Cn. For reasons

which are apparent from Lemma A.1, this norm is often referred to as spectral

norm.

Lemma A.1. Let U ∈ Mn be unitary, A,B ∈ Mn arbitrary matrices, D =

diag(λ1, . . . , λn) a diagonal matrix and v ∈ Cn. Then

(1) ‖AB‖ ≤ ‖A‖ · ‖B‖

(2) ‖A‖ = ‖A∗‖

(3) ‖AU‖ = ‖UA‖ = ‖A‖

(4) ‖D‖ = maxi |λi|

(5) A Hermitian ⇒ ‖A‖ = σmax(A)

(6) ‖A‖ =
√
σmax(AA∗) =

√
‖AA∗‖

(7) ‖U‖ = 1
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A.1 Properties of the matrix norm

(8) A ≥ 0 ⇒ ‖A‖ ≤ tr A

(9) ‖A‖ = sup‖x‖=1

√
|x∗AA∗x|

(10) ‖A‖ = sup‖x‖=‖y‖=1 |x∗Ay|

(11) ‖A‖ ≥
√∑

j |Aij|2 for all i = 1, . . . , n.

(12) ‖A‖ ≥ |Aij| for all i, j = 1, . . . , n.

(13) ‖A−1‖ ≤ ‖A‖n−1

| detA| if detA 6= 0

Proof. (1) ‖ABv‖ ≤ ‖A‖‖Bv‖ holds for all ‖v‖ = 1.

(2) ‖Av‖2 = 〈Av,Av〉 = 〈v,A*Av〉 ≤ ‖v‖ · ‖A*‖ · ‖Av‖ ⇒ ‖A‖ ≤ ‖A*‖.
’≥’ follows by symmetry.

(3) (a) ‖UAv‖2 = 〈UAv, UAv〉 = 〈Av,Av〉 = ‖Av‖2 ⇒ ‖UA‖ = ‖A‖. (b)

‖AU‖ = supv 6=0
‖AUv‖
‖v‖ = supw 6=0

‖Aw‖
‖U*w‖

= ‖A‖

(4) ’≥’: ‖D‖ ≥ ‖Dei‖ = ‖λi‖. ’≤’: v = (x1, . . . , xn)⊥ ⇒ ‖Dv‖2 =∑
i |λixi|2 ≤ maxi |λi|2 · ‖v‖2

(5) A is unitarily diagonalizable ⇒ A = UDU* ⇒ ‖A‖ (3)
= ‖D‖ (4)

= σmax(A)

(6) ‖AA*‖ = σmax(AA*) by (5). First ‖AA*‖ ≤ ‖A‖ · ‖A*‖ = ‖A‖2. For

‖v‖ = 1 we have ‖A*v‖2 = 〈A*v, A*v〉 = 〈v,AA*v〉 ≤ ‖AA*v‖ ≤
‖AA*‖, so ‖A‖2 = ‖A*‖2 ≤ ‖AA*‖.

(7) ‖U‖ (6)
=
√
‖UU*‖ = 1

(8) ‖A‖ = σmax(A) ≤ tr (A)

(9) By (6) it suffices to show ‖A‖ = sup‖x‖=1 |x∗Ax| for A Hermitian. Let

‖x‖ = 1. Note x∗Ax =
∑

i,j Aijxixj =
∑

i(Ax)ixi = 〈x,Ax〉. So

|x∗Ax| ≤ ‖A‖. Taking the supremum gives ’≥’ of the claim. The other

direction follows from (5) by plugging in an eigenvector corresponding

to the greatest eigenvalue of A.

(10) Same argument as in (9).
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A.2 Analytic matrix-valued functions

(11) Plug in x = ei in (9).

(12) Plug in x = ei, y = ej in (10).

(13) By homogeneity we may assume ‖A‖ = 1. Let λ be the smallest

eigenvalue of AA*. Then λ ≥ det(AA∗) = (detA)2 by (6). Note that

λ−1 is the greatest eigenvalue of (AA*)−1, so λ−1 = ‖(A−1)(A−1)*‖ =

‖A−1‖2. Together ‖A−1‖ = λ−1/2 ≤ 1
| detA| .

The eigenvalues of the positive matrix AA∗ are also called the singular

values of A. So property (6) says that the matrix norm of A is the square

root of the largest singular value.

The following fact is often useful when dealing with contractive mvfs and

makes the particular choice of the spectral norm especially convenient.

Lemma A.2. A matrix A ∈Mn satisfies ‖A‖ ≤ 1 if and only if I−AA∗ ≥ 0.

Proof. Let AA∗ = UDU∗ with U a unitary and D a diagonal matrix. Then

I − AA∗ ≥ 0 is equivalent to I − D ≥ 0 and this is equivalent to ‖A‖ ≤ 1

since the diagonal entries of D are the singular values of A.

A.2 Analytic matrix-valued functions

By an analytic matrix-valued function (analytic mvf) in the unit disk D ⊂ C

we mean a function A : D → Mn all components of which are holomorphic

throughout D. The terms rational, continuous, differentiable, meromorphic

and harmonic are defined the same way for mvfs. It is clear that the basic im-

plements of “non-multiplicative” complex analysis, i.e. Laurent development,

Cauchy and Poisson integral formula, mean value property etc., immediately

carry over to the matrix-valued case. An analytic mvf A is called bounded if

‖A‖∞ = sup
z∈D
‖A(z)‖ <∞

The space H∞ is defined as the set of bounded analytic mvfs on the unit

disk, whose determinant does not vanish identically.
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A.2 Analytic matrix-valued functions

Lemma A.3. Let (Ak)k be a sequence of analytic mvfs on D which converges

uniformly on compact subsets to a mvf A. Then A is analytic.

Proof. This follows just like in the scalar case using the appropriate analo-

goues of Cauchy’s and Morera’s theorems (cf. [9, Theorem 10.28]).

Lemma A.4. Let A be an analytic mvf on D. Then ‖A‖ is subharmonic.

Proof. Let z0 ∈ D and γ(t) = z0 + reit for t ∈ [0, 2π) where 0 ≤ r < 1 is

such that γ(t) ∈ D for all t ∈ [0, 2π). Then by the Cauchy integral formula

applied to the components of A we get

A(z0) =
1

2πi

∫
γ

A(z)

z − z0

dz =
1

2π

∫ 2π

0

A(γ(t)) dt

Hence the triangle inequality gives ‖A(z0)‖ ≤ 1
2π

∫ 2π

0
‖A(z0 + reit)‖ dt which

proves the claim.

By saying that A : D→Mn is a contractive mvf, we mean that ‖A(z)‖ ≤
1 for all z ∈ D. The space of all contractive analytic mvfs, whose determinant

does not vanish identically is denoted by S ⊂ H∞. The following rank

invariance statement is from [7, Chapter I].

Lemma A.5. Let A ∈ S be such that I − A(z0)∗A(z0) has rank 0 ≤ r < n

for some z0 ∈ D. Then there exist unitary matrices U, V and a contractive

analytic mvf Ã : D→Mr such that

A(z) = U

(
Ã(z) 0

0 In−r

)
V

for all z ∈ D. In particular, I − A(z)A∗(z) has rank r throughout D.

Proof. By assumption, 1 is an eigenvalue of A(z0)A∗(z0) and the dimension

of the corresponding eigenspace is n− r. Hence, by singular value decompo-

sition, we can find unitary matrices U, V and a r× r diagonal matrix D such

that

A(z0) = U

(
D 0

0 In−r

)
V
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Now consider the contractive analytic matrix function B(z) = U∗A(z)V ∗.

Since |Bij(z)| ≤ ‖B(z)‖ = ‖A(z)‖ ≤ 1, the entries of B are analytic functions

mapping D to D. We have by construction that Bii(z0) = 1 for i = r +

1, . . . , n which implies by the maximum principle that Bii(z) = 1 for all

z ∈ D, i = r + 1, . . . , n. Finally, property (11) from above implies that the

off-diagonal entries in the rows and columns r+1, . . . , n of B are all constant

0. Summing up, B is of the form

B(z) =

(
Ã(z) 0

0 In−r

)

for some contractive analytic r × r matrix-valued function Ã.

We can use this to obtain the following analogue of the strong maximum

principle for holomorphic functions on the unit disk.

Corollary A.6. A contractive analytic mvf, which is unitary at some z ∈ D,

is constant.

Proof. This is the case r = 0 in the previous lemma.

An important tool for extracting convergent subsequences from contrac-

tive analytic mvfs is Montel’s theorem.

Theorem A.7 (Montel). Let (Ak)k be a sequence of contractive analytic

mvfs. Then there exists a subsequence (Akj)j which converges uniformly on

compact sets to a contractive analytic mvf.

Proof. This is a consequence of the theorem of Arzelà-Ascoli. Equicontinuity

of the sequence follows, because it is uniformly bounded and also the sequence

of its derivatives is uniformly bounded by the Cauchy integral formula.

B The Herglotz representation theorem for

mvfs

The aim of this section is to prove a generalization of the Herglotz represen-

tation theorem for positive harmonic functions (see [5, Theorem I.3.5 (c)])
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B.1 Helly’s classical theorems

to the matrix-valued case. The proof uses Helly’s classical (scalar) theorems,

which we will prove first.

Theorem B.1 (Herglotz). Let A : D→ Mn be holomorphic and ImA(z) =
1
2i

(A(z) − A∗(z)) ≥ 0 for z ∈ D. Then there exists a Hermitian matrix A0

and an increasing mvf σ : [0, 2π]→Mn such that

A(z) = A0 + i

∫ 2π

0

eit + z

eit − z
dσ(t) (z ∈ D)

The integral used in this theorem is the classical Riemann-Stieltjes in-

tegral with respect to a matrix-valued function. Integrals of this type are

discussed for instance in [8], [1] and in a more general setting in [4, §4].

B.1 Helly’s classical theorems

The next proposition is also known as Helly’s first theorem and provides a

compactness result for BV-functions with respect to pointwise convergence.

Theorem B.2 (Helly’s selection theorem, scalar version). Let (fk)k be a

sequence of functions in BV([a, b]) with uniformly bounded total variation.

Then there exists a subsequence (fkj)j such that fkj converges pointwise to

some function f ∈ BV([a, b]).

Proof. Let us first prove the statement in the case that (fk)k is a uniformly

bounded sequence of increasing functions. By the usual diagonal subsequence

argument we can use the uniform boundedness to extract a subsequence (fkj)j

which converges at all rational points in [a, b] to an increasing function f on

[a, b] ∩Q. We extend f to all of [a, b] by

f(t) = inf{f(q) : q ∈ [t, b] ∩Q} (t ∈ [a, b])

Now f is by construction increasing on [a, b]. It remains to discuss the con-

vergence of fkj(t) for t ∈ [a, b] ∩ Qc. If f is continuous at t, the density of

Q ∩ [a, b] in [a, b] implies fkj(t) → f(t). Since f is only discontinuous at

countably many points, we may achieve convergence everywhere by repeat-

ing the diagonal subsequence argument on the set of discontinuities, therefore
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B.1 Helly’s classical theorems

choosing a further subsequence. This finishes the proof for increasing func-

tions.

Now assume that (fk)k is a sequence of BV-functions with uniformly

bounded total variation. We decompose fk into increasing functions by writ-

ing

fk = gk − hk

with gk(t) = var[a,t]fk and hk = gk − fk. Assume |fk(t)| ≤ var[a,b]fk ≤ C for

all k. Then also |gk(t)| ≤ C and |hk(t)| ≤ 2C for all k and t ∈ [a, b]. Thus we

can use the statement for increasing functions to choose a subsequence such

that both (gkj)j and (hkj)j converge pointwise to increasing functions g and

h, respectively. That implies fk → f = g − h pointwise. Finally, f is also

of bounded variation since for every fixed partition τ of [a, b] we have that

limk→∞ varτ[a,b]fk = varτ[a,b]f . Therefore var[a,b]f ≤ C.

The next theorem is a convergence theorem for Riemann-Stieltjes inte-

grals. It is also known as Helly’s second theorem.

Theorem B.3 (Helly’s convergence theorem, scalar version). Let (fn)n be a

sequence in BV([a, b]) with uniformly bounded total variation which converges

pointwise to some function f on [a, b]. Then f ∈ BV([a, b]) and for every

ϕ ∈ C([a, b]) we have

lim
k→∞

∫ b

a

ϕ(t) dfk(t) =

∫ b

a

ϕ(t) df(t)

Proof. Choose C > 0 such that var[a,b]fk ≤ C for all k. First note that

f ∈ BV([a, b]), since for any partition τ of [a, b], varτ[a,b]f = limk→∞ varτ[a,b]fk

and therefore also var[a,b]f ≤ C.

Let ε > 0. Since ϕ is uniformly continuous on [a, b], there exists δ > 0

such that |ϕ(t)− ϕ(s)| < ε
2C

for |t− s| < δ.

Now whenever (τ, ξ) ∈ T ba is a tagged partition such that ν(τ) < δ, we

get
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B.2 Proof of the theorem

∣∣∣∣∣
∫ b

a

ϕdf −
m∑
i=1

ϕ(ξi)∆if

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

∫ ti

ti−1

(ϕ(t)− ϕ(ξi))df(t)

∣∣∣∣∣ ≤ ( ε

2C

) m∑
i=1

var[ti−1,ti]f

=
ε

2C
· var[a,b]f ≤

ε

2

The same calculation gives also∣∣∣∣∣
∫ b

a

ϕdfk −
m∑
i=1

ϕ(ξi)∆ifk

∣∣∣∣∣ ≤ ε

2

for all k. Therefore

∣∣∣∣∫ b

a

ϕdfk −
∫ b

a

ϕdf

∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

ϕdfk −
m∑
i=1

ϕ(ξi)∆ifk

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

ϕ(ξi)(∆ifk −∆if)

∣∣∣∣∣
+

∣∣∣∣∣
m∑
i=1

ϕ(ξi)∆if −
∫ b

a

ϕdf

∣∣∣∣∣ ≤ ε+ ‖ϕ‖∞
m∑
i=1

|∆ifk −∆if |

Since fk → f pointwise, we can let k → ∞, while letting the tagged

partition (τ, ξ) fixed, and obtain

lim sup
k→∞

∣∣∣∣∫ b

a

ϕdfk −
∫ b

a

ϕdf

∣∣∣∣ ≤ ε

Since ε was arbitrary, the proposition is proven.

One can use Helly’s theorems to prove the familiar characterization of con-

tinuous functionals on C([a, b]) as being given by Stieltjes-integrating against

BV-functions. This is the classical Riesz representation theorem.

B.2 Proof of the theorem

In this section we prove the Herglotz representation theorem. The proof

is based on the proof in the scalar case, just that we use Helly’s theorems

instead of Riesz’ representation theorem and Banach-Alaoglu. This has the
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B.2 Proof of the theorem

benefit that we are simply dealing with pointwise converging sequences of

functions.

Proof of Theorem B.1. We assume A(0) = 0. Set T (z) = ImA(z) for

z ∈ D and T (r)(t) = T (reit) for t ∈ [0, 2π] and 0 < r < 1. Then the scalar

mean value property for harmonic functions gives

1

2π

∫ 2π

0

‖T (reit)‖ dt ≤ 1

2π

∫ 2π

0

tr T (reit) dt = tr T (0) = C

Hence also ‖T (r)
ij ‖1 ≤ C for all 1 ≤ i, j ≤ n where ‖ · ‖1 denotes the 1-norm

w.r.t. the Lebesgue measure on [0, 2π]. Now define

σ
(r)
ij (t) =

1

2π

∫ t

0

T
(r)
ij (s) ds

Note that σ
(r)
ij are BV-functions with var[0,2π]σ

(r)
ij ≤ C and the mvfs σ(r)(t) =

(σ
(r)
ij (t))ij are increasing, because T r(t) ≥ 0. Now we can apply Helly’s

selection Theorem B.2 to obtain a sequence (rk)k with rk → 1− and a BV-

function σij such that

σ
(rk)
ij −→ σij

pointwise on [0, 2π]. By taking appropriate subsequences we can assume

without loss of generality that this holds for all (i, j).

The mvf σ = (σij)ij is increasing, as it is the pointwise limit of increasing

mvfs. The functions A(r)(z) = A(rz), z ∈ D are holomorphic on D and con-

tinuous on D. Hence the Poisson integral formula for holomorphic functions

implies

A(r)(z) =
i

2π

∫ 2π

0

eit + z

eit − z
T (r)(t) dt

Let z ∈ D be fixed. Applying the above to f(t) = eit+z
eit−z we get

A(z) = lim
k→∞

A(rk)(z) = lim
k→∞

i

∫ 2π

0

eit + z

eit − z
dσ(rk)(t) = i

∫ 2π

0

eit + z

eit − z
dσ(t)

where the last equality follows from Helly’s convergence Theorem B.3.
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B.2 Proof of the theorem

Notation

D unit disk around the origin in C

T unit circle around the origin in C

H upper half plane in C

Mn space of n× n matrices with entries in C

I = In unit matrix in Mn

A∗ conjugate transpose of A ∈Mn

Aij (i, j)th entry of the matrix A

A ≥ 0 the Hermitian matrix A is positive semidefinite

A > 0 the Hermitian matrix A is positive definite

‖A‖ operator norm of the matrix A

tr A trace of the matrix A

σ(A) set of eigenvalues of A

σmax(A) spectral radius of A, i.e. largest eigenvalue

H∞ bounded analytic matrix functions on D with detA 6≡ 0

S ⊂ H∞ subspace of contractive functions
y∏

=
∏

product of matrices ordered from left to right
x∏

product of matrices ordered from right to left
y∫

(left-)multiplicative integral

ReA real part of the matrix A, given by 1
2
(A+ A∗)

ImA imaginary part of the matrix A, given by 1
2i

(A− A∗)
C(K) space of continuous function on a compact set K ⊂ Rn

BV([a, b];Mn) space of matrix-valued bounded variation functions on [a, b] ⊂ R

BV([a, b]) short for BV([a, b];M1)

var[a,b]f variation of a matrix-valued function f on the interval [a, b]

osc[a,b]f oscillation of a function f on the interval [a, b]

f ∈Mb
a[E] the multiplicative integral

y∫ b
a

exp(f dE) exists

hz(θ) the Herglotz kernel hz(θ) = z+eiθ

z−eiθ

1M characteristic function of the set M

θ† generalized inverse of the increasing function θ

λ Lebesgue measure on R
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ysis. Übersetzt aus dem Englischen von Uwe Krieg.). München: Olden-

bourg Verlag, 1999.

[10] Ludwig Schlesinger. Neue Grundlagen für einen Infinitesimalkalkül der

Matrizen. Mathematische Zeitschrift, 33:33–61, 1931.
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J-contractive mvf, 27

P (f, E, τ, ξ), 8

H∞, 27

S, 27

T ba , 8

BV([a, b];Mn), 8

var[a,b]E, 8

absolutely continuous, 18

analytic mvf, 27, 64

B.P. factor, 28

B.P. product, 28, 33, 36, 37

Blaschke condition, 29, 31

Blaschke product, 4

Blaschke-Potapov factor, 28

Blaschke-Potapov product, 28

bounded mvf, 27

bounded variation, 8

Cauchy criterion, 9

Cayley transform, 38

Change of variables, 17

contractive mvf, 27, 65

convergent product, 29

decreasing, 7

detachability condition, 32, 33

determinant formula, 14

generalized inverse, 17, 50

Helly’s convergence Theorem, 45

Helly’s convergence theorem, 22, 68

Helly’s first theorem, 26, 67

Helly’s second theorem, 22, 68

Helly’s selection theorem, 26, 45, 67

Herglotz kernel, 28

Herglotz representation theorem, 67

increasing, 7

inner function, 46

Lebesgue differentiation theorem, 20

Lebesgue integrable, 18

Lebesgue’s criterion, 10

matrix norm, 7, 62

maximum principle, 33, 66

Montel’s theorem, 49, 66

multiplicative integral estimate, 16

multiplicative Lebesgue integral, 19

multiplicative Stieltjes integral, 9

mvf, 4

operator norm, 62

ordinary differential equation, 20

oscillation, 11

outer function, 48

partition, 8

positive matrix, 7

Potapov’s fundamental theorem, 28,

49

pp-inner, 46

radial limit, 46
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rank invariance lemma, 65

rank of a zero, 29

rational approximation, 38

sc-inner, 47

scalar inner function, 4

scalar outer function, 4

Schur class, 27, 65

singular continuous, 47

singular inner function, 46

singular value, 64

spectral norm, 62

Stieltjes integral estimate, 22

strictly decreasing, 7

strictly increasing, 7

strictly positive matrix, 7

subdivision, 8

subharmonic, 33, 65

tagged partition, 8

telescoping identity, 21, 23, 42

total variation, 8

zero of a mvf, 29
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