[Go around with names]
Another main idea of section 1.1 is that a function need not be defined by a single algebraic expression; it can be defined piecewise, using different algebraic expressions in different parts of its domain.

E.g., the function f given by the piecewise definition



{ x+1
if x < –1


f(x) =
{   0

if –1(x(1




{ x–1
if x > 1

has a graph that looks like
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Q. Graph the function |1+x|+|1–x|.

To solve a problem like this, find the breakpoints.

|1+x| has just one breakpoint: x=–1

|1–x| also has one breakpoint: x=1

|1+x|+|1–x| has two breakpoints: x=1 and x=–1.
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Note that this is an even function of x.

Don’t make the mistake of thinking that an even function of x must be of the form f(x) = xn with n even!
Question 1: “Is there a function that is both increasing on

[–1,1] and decreasing on [–1,1]?”

..?..

..?..

(Note that f(x) = x2 is NOT such a function, because according to our definition, this function is neither increasing on [–1,1] nor decreasing on [–1,1].)

(The empty function is not an example, because in order to be increasing on [–1,1], a function must be defined throughout all of [–1,1].)

You might say that there’s no such function, and offer the following reasoning:

Answer 1: “No such function can exist, because a function can’t be both increasing and decreasing at the same time.”

Seems convincing?

..?..

..?..

Compare:

Question 2: “Is there a function defined throughout [–1,1] that is both weakly increasing on [–1,1] and weakly decreasing on [–1,1]?”

Answer 2: “No such function can exist, because a function can’t be both weakly increasing and weakly decreasing at the same time.”

Seems convincing?

But in fact, we know plenty of functions that are both weakly increasing on [–1,1] and weakly decreasing on 

[–1,1], such as the constant function f(x) = 17. (Nothing special about 17; any constant function will do.)

We need to raise our standards for what counts as a proof!

Here’s the kind of thing we want to call a proof, so we don’t fool ourselves into believing false things.

Claim: Suppose I = [a,b] is an interval in R with a < b and f is a function defined throughout I.  Then the function f cannot be both increasing on I and decreasing on I.

Proof: Suppose f is both increasing on I and decreasing on I. Take x1 and x2 in I with x1 < x2.  Since f is increasing on I, f(x1) < f(x2); and since f is decreasing on I, f(x1) > f(x2).  But f(x1) < f(x2) < f(x1)  is a contradiction.

What would happen if we tried to imitate this proof to “prove” that a function cannot be both weakly increasing and weakly decreasing? ...

..?..

..?..

We’d end with the punchline “But f(x1) ≤ f(x2) ≤ f(x1)  is a contradiction”, which wears its mistake on its sleeve.  In fact, the nature of the mistake in the faulty proof leads us quickly to a counterexample: a constant function.

In fact, our failed attempt to give a rigorous version of Answer 2 not only leads us to a construction of a counterexample but also leads us to a theorem:

Claim: If the function f is both weakly increasing on I and weakly decreasing on I, it must be constant on I.

Proof: Suppose f is both weakly increasing on I and weakly decreasing on I. Take x1 and x2 in I with x1 < x2.  Since f is weakly increasing on I, f(x1) ≤ f(x2); and since f is weakly decreasing on I, f(x1) ( f(x2).  But f(x1) ≤ f(x2) ≤ f(x1) implies f(x1) = f(x2).  Since this is true for all x1 and x2 in I,  f is constant on I.
One advantage of rigorous, pedantic methods of proof is that they can lead you to catch your mistakes.

Another is that it can lead you to discover new truths.

[Skip this in lecture:

Theorem: If f is increasing on I, f is weakly increasing on I.

Proof: 

..?..

Suppose f is increasing on I.  Given x1 < x2 in I, the fact that f is increasing tells us that f(x1) < f(x2), which implies f(x1) ≤ f(x2).  Since this is true for all x1 < x2 in I, we conclude that f is weakly increasing on I.

Sometimes a theorem has more than one proof.
Theorem: f(x) = x3 is an increasing function.

Proof #1: Suppose x1 < x2.  We split into cases.

If x​1 and x2 have the same sign, we have x12 + x1x2 + x22 > 0, so x23 – x13 = (x2 – x1)(x12 + x1x2 + x22) > 0, so x13 < x23.

If x​1 and x2 have opposite sign, we have x1 < 0 < x2, so x13
< 0 < x23, so x13 < x23.

Proof #2: If x1 < x2, we have x2 – x1 > 0, and x12 + x1x2 + x22 = x12 + x1x2 + x22/4 + 3x22/4 = (x1 + x2/2)2 + 3x22/4 > 0, so 

x23 – x13 = (x2 – x1)(x12 + x1x2 + x22) > 0, so x13 < x23.

Stop skipping here.]

Questions about the homework?

..?..

..?..
Section 1.2
What’s the main point of section 1.2?

..?..

..?..

Functions that crop up in the real world can be represented or at least approximated by functions that are algebraically built up from some universal building blocks.  If we can understand the building blocks, we can understand the functions that are built from them, and their graphs.
Building blocks: linear functions, polynomials, rational functions (built from polynomials), trig and exponential functions, and logarithms.

Combination rules: You can add, subtract, multiply, or divide two functions to get a new function; or you can compose two functions to get a new function.

(f+g)(x) = f (x)+ g(x)

(f – g)(x) = f (x) – g(x)

(f g)(x) = f (x) g(x)

(f /g)(x) = f (x)/g(x)

(f (g)(x) = f (g(x))

If either f(x) or g(x) is undefined, so is f(x)+g(x).

So the domain of f+g is the intersection of the domain of f and the domain of g.

Likewise for the domain of f – g and the domain of  f g.

Likewise for the domain of f /g, right?

..?..

..?..

Wrong!  In order for f (x)/g(x) to be defined for a particular x, it is necessary that f(x) and g(x) be defined AND that g(x) be nonzero.

Example: Suppose f(x) = x2–1 and g(x) = x–1 for all x.  What is the domain of f /g?

..?..

..?..

The set of all x(1.

When x is 1, f (x)/g(x) = f(1)/g(1) = 0/0 is undefined.

When x is anything other than 1, f (x)/g(x) = (x2–1)/(x–1) = (x+1)(x–1)/(x–1) = x+1.

So the graph of f (x)/g(x) is the line y = x+1 with one point missing, namely (x,y) = (1,2).  [Sketch it.]

Moral: In high school, you were taught to automatically rewrite (x2–1)/(x–1) as x+1, but now you must learn that as functions of x, the two are subtly different: the former has domain {x in R: x ( 0} while the latter has domain R.

“But why is 0/0 undefined?”

..?..

..?..

a/b means “the x satisfying the equation bx=a”, so 

0/0 should mean “the x satisfying the equation 0x=0”.

What is this x?

..?..

..?..

Every real number x has this property!

Through any n data points that pass the vertical line test you can pass a suitable degree-(≤n–1) polynomial function.  This is Lagrange’s interpolation theorem.  You’ll have a chance to develop the basic idea on your own in the homework.  However, be aware that this polynomial is good for interpolation (guessing values of the function for values of x that lie within the range of the x-values of the data-points) but bad for extrapolation.  Example: sin x.
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This plot shows two functions of x, with x going from –10 to 10: one is sin x, and the other is polynomial 

 (64x)/(21()-(208x3)/(45(3)+(16x5)/(9(5)-(64x7)/(315(7)
which is the polynomial of lowest degree that goes through the nine points

(-2(,0),(-3(/2,1),(-(,0),(-(/2,-1),

(0,0),((/2,1),((,0),(3(/2,-1),(2(,0).
As you can see, the two functions agree closely for values of x between –2π and +2π, but for values of x outside this range, watch out!

Digression: Here’s the world’s smallest, and most useful, trig table:

  (     :
0

(/6

(/4

(/3

(/2

sin ( :
sqrt(0)/2
sqrt(1)/2
sqrt(2)/2
sqrt(3)/2
sqrt(4)/2

cos ( :
sqrt(4)/2
sqrt(3)/2
sqrt(2)/2
sqrt(1)/2
sqrt(0)/2
Notice that the sines follow a simple pattern (all that’s changing is the number inside the square root sign, which just counts up from 0 to 4); the cosines follow the same pattern in reverse.

It’s worth committing this table to memory, along with a few extra formulas like

sin (( + (/2) = cos ( 

and 

cos (( + (/2) = – sin ( ;

with this information you can find the sine and cosine of any angle that’s a multiple of 30 degrees or 45 degrees, and this will enable you to solve most homework or test questions that involve knowing the value of sin ( or cos ( for a specific angle (.

