Section 1.3: The notion of limit (continued)

[Discuss one-sided limits, e.g. limx(0+ |x|/x, limx(0– |x|/x.  Make sure the students understand that the two-sided limit limx(0 |x|/x is undefined, i.e. does not exist.]

[Omit.]

Ask your graphing calculator to plot f(x) = 1/(1 – 21/x) for x between –2 and 2.

What is lim x(0 f(x)?

..?..

..?..

Undefined.

What is lim x(0+ f(x)?

..?..

..?..

0.

What is lim x(0– f(x)?

..?..

..?..

1.
Stewart’s paraphrase of the definition of limits: We say limx(a f(x) = L if the values of f(x) tend to get closer and closer to the number L as x gets closer and closer to the number a (from either side of a) but x ( a.

But what does “closer and closer” mean?

How does Stewart’s paraphrase apply to the true assertion

limx(0 1 = 1? 

..?..

The paraphrase could be misinterpreted to mistakenly reject this true assertion.  (“f(x) can’t get any closer to 1 if it already is 1!”)
How does Stewart’s paraphrase apply to the true assertion

limx(0 x sin 1/x = 0?

[image: image1.emf]









..?..

The paraphrase could be misinterpreted to mistakenly reject this true assertion.  (“It doesn’t get closer and closer; it gets closer, then farther, then closer, then farther, and so on, forever!”)

How does Stewart’s paraphrase apply to the false assertion

limx(0 x2 = –1?

..?..

Note that the paraphrase could be misinterpreted to mistakenly accept this false assertion.  (“Moving x closer to 0 makes x2 closer to –1, just like moving 1 foot north makes you closer to the North Pole!”)
So it’s good to have a definition of limits that has no friendly-sounding but ambiguous phrases like “closer and closer”.  Hence the need for the epsilon-delta definition we’ll discuss later today.

Suppose f(x) is defined for all x near a, though not necessarily at a itself.  (Speaking more formally, we assume there exists some r such that f(x) is defined for all x satisfying 0 < |x – a| < r, i.e.,  f is defined throughout the open intervals (a – r, a) and (a, a + r); sometimes we call the set {x: 0 < |x – a| < r} = (a–r, a) ∪ (a, a+r) the “punctured open interval” of radius r centered at a.)

Then it makes sense to ask whether the limit of f(x) as x approaches a exists, and if so, what that limit is.

Stewart’s first definition: We write limx(a f(x) = L and say “the limit of f(x), as x approaches a, equals L” if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close (but not equal) to a.

[Draw picture from Stewart, using a red interval on the y-axis (with dashed horizontal lines) and a green interval on the x-axis (with dashed vertical lines).] 

[Draw a companion picture in which the required property does NOT hold, because the left- and right-limits do not coincide.]

limx(a f(x) = L means that for every red interval around L on the y-axis, there exists a green interval around a on the x-axis so that for every x in the green interval (except possibly x=a), f(x) is defined and lies in the red interval.  That is, the part of the graph y = f(x) that lies between the two green (vertical) lines lies between the two red (horizontal) lines (with the possible exception of (a, f(a)), which might be somewhere else or might not even be part of the graph).

[Show Stewart’s TEC animation for section 1.3.]
Formal definition: f(x) converges to L as x goes to a  iff
for every ( > 0 there is a ( > 0 such that if x is any number  in {x: 0 < |x – a| < (} then |f(x) – L| < (.

Here’s an alternative that might be more digestible on a first encounter: 

Let Ia(() denote the punctured interval (a–(, a) ∪ (a, a+() = {x in R: 0 < |x – a| < (}.

Then we say that f(x) converges to L as x goes to a if and only if all of the following conditions hold:

there is a (1 > 0 such that |f(x) – L| < .1 for all x in Ia((1);

there is a (2 > 0 such that |f(x) – L| < .01 for all x in Ia((2);

there is a (3 > 0 such that |f(x) – L| < .001 for all x in Ia((3);

and so on.

Since there’s nothing special about the numbers .1,  .01, .001, etc., mathematicians prefer to write the definition this way: f(x) converges to L as x goes to a  if and only if

for every ( > 0 there is a ( > 0 such that |f(x) – L| < ( for all x in Ia(().

Unpacking the meaning of “Ia(()” (a non-standard symbol that I introduced only as conceptual scaffolding anyway), we can write the definition this way: 

f(x) converges to L as x goes to a  if and only if

for every ( > 0 there is a ( > 0 such that |f(x) – L| < ( for every x in {x: 0 < |x – a| < (}.

Finally, let’s transform 

“|f(x) – L| < ( for every x in {x: 0 < |x – a| < (}” 

into the equivalent statement

“every x in {x: 0 < |x – a| < (} satisfies |f(x) – L| < (”

and then into the more obscure but still equivalent form

“if x is any number in {x: 0 < |x–a| < (} then |f(x) – L| < (”.


Then the definition of the limit concept becomes

“f(x) converges to L as x goes to a  iff

for every ( > 0 there is a ( > 0 such that if x is any number  in {x: 0 < |x–a| < (} then |f(x) – L| < (.”

Counterpart: f(x) does not converge to L as x goes to a  (
there exists an ( > 0 such that for all ( > 0 there exists a number x in {x: 0 < |x – a| < (} with |f(x) – L| ≥ (.

It may help to think of limits in terms of a game between two players.  
The villain (player #1, aka Adam) gets to pick ( > 0, and is trying to make the inequality |f(x) – L| < ( FALSE.  
The hero (player #2, Eve) gets to pick ( > 0.  
Then Adam gets to pick a number x, subject only to the constraint 0 < |x – a| < (.  
Eve wins the game if |f(x) – L| < (.  
Otherwise, Adam wins the game.  
A winning strategy for player Eve is a way of choosing a (  in response to any (  Adam may throw at her, where the (  Eve picks can depend on the (  Adam picks.

