Section 1.3: The notion of limit (continued)
True or false?: “If f(a) is defined, limx(a f(x) = f(a).” 

..?..

..?..

You could have a function f for which f(a) is defined but limx(a f(x) isn’t.

How about this more modest claim?: “If f(a) is defined and limx(a f(x) exists, then limx(a f(x) = f(a).”

..?..

..?..

Counterexample?

..?..

..?..

Take f(x) = x for all x ≠ 1, f(1) = 2.  With a = 1, we have 

limx(a f(x) = 1 but f(a) = 2.”

Formal definition: f(x) converges to L as x goes to a  (
for every ( > 0 there is a ( > 0 such that if x is any number  in {x: 0 < |x – a| < (} then |f(x) – L| < (.

Claim (see Example 1 from p. 24): If A(h) = 4.9(10+h) for all h ( 0, limh(0 A(h) = 49.

Bad proof: “Just plug in h = 0.”

It’s wrong because in general, limx(a f(x) need not equal f(a).

To show that limh(0 A(h) = 49 is TRUE, using only what we’ve proved in sections 1.1 – 1.3, we need to show that 

For every ( > 0 there is a number ( > 0 such that 

if h is any number satisfying 0 < |h – 0| < (,

A(h) will satisfy |A(h) – 49| < (.  

To figure out what ( we need (which will depend on (), rewrite |A(h) – 49|: since A(h) = 4.9(10+h), we have 

|A(h) – 49| = |4.9(10+h) – 49| = |49 + 4.9h – 49| = |4.9h| = 4.9 |h|.   So, we need to show that 

For every ( > 0 there is a number ( > 0 such that 

if h is any number satisfying 0 < |h| < (
then 4.9 |h| < (.  

And this is easy, because we can take ( = (/4.9.  (Check: If 0 < |h| < (/4.9, then 4.9 |h| < (.)

Note that if Eve takes ( = (/5, or ( = (/10, she’s still okay: If 0 < |h| < (/5, then |A(h) – 49| = 4.9 |h| < 4.9 ( /5 < (.  Eve can win with the (/4.9 strategy or the (/5 strategy.  Since Eve has a winning strategy, we say that the proposition is true.

Short, valid proof: “For any ( > 0, if we take ( = ( / 4.9, then every h satisfying 0 < |h – 0| < ( satisfies |A(h) – 49| = |4.9(10+h) – 49| = |4.9h| = 4.9 |h – 0| < 4.9 ( = (.”

When we’re inventing such a proof, we often come up with the definition of ( last, using the final line of the proof to tell us what ( we need, and then fill in the earlier details.  In this case, we wanted to have 4.9 ( ( ( at the last step, so we might as well take ( = ( / 4.9.

[Discuss Example 1.3.9 on page 32, since in the past students have found it hard to follow.]

The function f(x) = sin 1/x (defined for all x≠0) has a graph that looks like this:
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Do we have limx(0 f(x) = 0?

..?..

..?..

No.

What makes this example confusing the first time you see it is that there are plenty of values of x that are close to 0 such that f(x) is close to 0; in fact, there are infinitely many values of x that are close to 0 such that f(x) is equal to 0.  So you might think that this is enough to ensure that the limit of f(x) as x approaches 0 is 0.  But the definition of limits requires that every value of x that’s close to 0 should have f(x) close to 0, not merely that there should exist some values of x that are close to 0 with f(x) close to 0.

That is: Put down red lines y = 1/2 and y = –1/2.  There is no way to draw green lines x = ( and x = –( in such a way that the part of the graph of f(x) = sin 1/x that lies between the two green lines lies completely between the red lines.  No matter how close together the green lines are, there will be points on the graph of f  between the green lines where the y-coordinate reaches +1 and other points where the y-coordinate reaches –1 (and +1 and –1 do not lie between 1/2 and –1/2).

In fact, there is no number L with the property that f(x) is forced to stay close to L when x is forced to stay close to 0, so the limit of sin 1/x as x approaches 0 does not exist, or (equivalently) is undefined.

For the function f(x) = x sin 1/x (defined for all x≠0) do we have limx(0 f(x) = 0? 
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..?..

..?..

Yes.

What’s Eve’s strategy?

..?..

..?..

Eve wins by taking ( = (.

Check: For every x satisfying 0 < |x – 0| < (, we have 

|x sin 1/x – 0| = |x sin 1/x| = |x| |sin 1/x| ( |x| 1 = |x| = |x – 0| < ( = (.

(Note that this proof makes use of the handy fact that |ab| = |a| |b|, which you’ll prove in the next homework assignment.  Another handy fact about absolute values is that |a+b| ( |a| + |b|; this is called the triangle inequality.)

For three different solutions to 1.3.43, see http://jamespropp.org/141/ThreeWays.doc), 

and then you’ll be ready to tackle 1.3.44.

See also http://jamespropp.org/141/ValidProof.doc .
