Section 1.4: Laws governing limits

Main idea of section 1.4:

..?..

Just as you can build complicated functions from simple functions, you can compute limits of complicated functions using a dozen or so simple theorems about limits.

Suppose that limx(a f(x) exists and equals L,
and that limx(a g(x) exists and equals M.

Law 1. limx(a [f(x)+g(x)] = L+M 

Law 2. limx(a [f(x)–g(x)]= L–M 

Law 3. For any constant c, limx(a [cf(x)] = cL
Law 4. limx(a [f(x) g(x)] = LM
Law 5. limx(a [f(x) / g(x)] = L/M, as long as M(0

Also, 

Law 5(: limx(a [f(x) / g(x)] does not exist if M=0 and L(0.

Example: limx(0 1/x2 does not exist, since the numerator approaches 1 and the denominator approaches 0.

Proof of Law 5(: The proof is by contradiction.  Suppose we have limx(a f(x) = L ( 0 and limx(a g(x) = M = 0 and limx(a [f(x) / g(x)] = N, for some N.  Then applying Law 4 to the second and third assertions, we would get

limx(a [f(x) / g(x)][g(x)] = limx(a [f(x) / g(x)] limx(a [g(x)] = (N)(0) = 0.  But on the other hand we know that 

limx(a [f(x) / g(x)][g(x)] = limx(a f(x) = L ( 0.  Contradiction!

Other Limits Laws:

Suppose limx(a f(x) exists and equals L.

Law 6. limx(a [f(x)]n = ...

..?..

..?..

Ln, as long as ... 

..?..

..?..

n is a positive integer. 

What if n is a negative integer, say –1? ...   

..?..

..?..

It’s okay to take n < 0, as long as L ≠ 0.

Law 7. For any constant c, limx(a c = ... 

..?..

..?..

c. 

Law 8. limx(a x =... 

..?..

..?..

a.

Law 9. limx(a xn = ... 

..?..

..?..

an.  

(Can we derive this from two of our earlier laws? ... 

..?..

..?..

Law 6 and Law 8.)

Law 10. limx(a x1/n = ... 

..?..

..?..

a1/n, as long as ... 

..?..

..?..

n is a positive integer, and ... 

..?..

..?..

a > 0 (in the case where n is even).

What about a = 0?
..?..

..?..

Not if n is even!  Remember, limx(0 x1/2 is undefined.

It’s okay to let a be zero, negative as long as n is odd.

It’s okay to take n < 0, as long as a > 0 when n is even and a ( 0 when n is odd.

Law 11. limx(a [f(x)]1/n = …

..?..

..?..

L1/n, as long as ... 

..?..

..?..

n is a positive integer, and ... 

..?..

..?..

L > 0 (in the case where n is even); just as in Law 10, but with L replacing a.

(We won’t worry about n < 0.)

Can we derive Law 10 from the other Laws? ... 

..?..

..?..

Laws 8 and 11.

The direct substitution property for polynomial, rational, trigonometric, and exponential functions: 

If f(x) is a polynomial or rational or trigonometric or exponential function of x, and a is the domain of f, then limx(a f(x) = f(a), as long as a is not an endpoint of the domain of f.

Note that the direct substitution property does not apply to all functions; e.g., if H is the Heaviside function

           {1 if x ≥ 0

H(x) ={


   {0 if x < 0
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then limx(0 H(x) does not even exist, even though H(0) is defined.

Or, take f(x) = H(x) H(–x).  What does the graph of f(x) look like? ...

..?..

..?..

f(0) = 1 and f(x) = 0 for all x ≠ 0 [sketch it].

Note that for this example, limx(0 f(x) and f(0) are both defined but are not equal to each other: limx(0 f(x) = 0 ≠ 1 = f(0).

So the Heaviside function H(x) can’t be written as a rational or trigonometric function, because if it were, f(x) would be too, and f(x) would satisfy the Direct Substitution Property, and it doesn’t!

Useful fact: If f(x) = g(x) for all x ≠ a, and limx(a f(x) = L, then limx(a g(x) = L.

Example: f(x) = H(x) H(–x), and g(x) = 0 for all x.  Since f(x) = g(x) for all x ≠ 0, we have limx(0 f(x) = limx(0 g(x) = 0.

One-sided limits:

Suppose f(x) is a function defined for all values of x close to but less than a; that is, suppose there exists r > 0 such that f(x) is defined whenever x < a with |x – a| < r.  Then we say that limx(a– f(x) = L iff there for every ( > 0 there 

exists ( > 0 such that for all x < a with 0 < |x – a| < ( we have |f(x) – L| < (.

Likewise:

Suppose f(x) is a function defined for all values of x close to but greater than a; that is, suppose there exists r such that f(x) is defined whenever x > a with |x – a| < r.  Then we say that limx(a+ f(x) = L iff there for every ( > 0 there exists 

( > 0 such that for all x > a with 0 < |x – a| < ( we have 

|f(x) – L| < (.

Theorem: limx(a f(x) = L if and only if limx(a– f(x) and limx(a+ f(x) are both defined and both equal L.

Theorem (the “locality principle”): If f(x) and g(x) agree on some neighborhood of a (that is, if there exists (0 such that f(x) = g(x) for all x satisfying 0 < |x – a| < (0) then limx(a f(x) = limx(a g(x).

Example: To compute limx(1 |x|, take f(x) = |x| and g(x) = x.  We have f(x) = g(x) for all x > 0, and in particular for all x satisfying 0 < |x – 1| < 1/2; so, taking (0=1/2, we can apply the preceding Theorem to conclude that limx(1 |x| = limx(1 f(x) = limx(1 g(x) = limx(1 x = 1.  (Note: We could actually get away with taking a larger (0; even (0=1 works.)

Theorem 3: If f(x) ( g(x) when x is near a (except possibly at a) and limx(a f(x) and limx(a g(x) both exist, then 

limx(a f(x) ( limx(a g(x).

Question: Would this theorem remain true if we replaced “(” by “<” in both places? ...

..?..

..?..

No.  E.g., take f(x) = –x2 and g(x) = x2 and a = 0.  Then f(x) < g(x) for all x ≠ a but limx(a f(x) = limx(a g(x).

Computing limits of piecewise-defined functions: If




{ L(x) for x < c,


f(x)    =
{ M for x = c,




{ R(x) for x > c,

[draw pictures] then:

If a < c, limx(a f(x) = limx(a L(x).

If a > c, limx(a f(x) = limx(a R(x).

As for the case a = c: limx(c f(x) exists iff limx(c– L(x) and limx(c+ R(x) exist and are equal, in which case limx(c f(x) equals their common value.  (Note that M has no effect on any of these limits!)

Theorem 4 (the Squeeze Theorem): If f(x) ( g(x) ( h(x) when x is near a (except possibly at a) and limx(a f(x) and limx(a h(x) both exist and are equal to L, then limx(a g(x) exists and equals L.

An application of the squeeze theorem to a crazy function: Let f(x) = x sin 1/x for all x ≠ 0 (with f(0) undefined).

The graph of f looks like this:

[image: image2.emf]


�0.5 0.5



�0.2



0.2



0.4



0.6











Claim: limx(0 f(x) = 0.

Proof 1: See the notes from 9/21, which proves the claim using the formal definition of limits.

Proof 2: Use the Squeeze Theorem: Since –|x| ( f(x) ( |x| for all x ≠ 0, and since limx(0 –|x| = 0 and limx(0 |x| = 0 (the latter claim follows from our assertions about piecewise-defined functions and one-sided limits, and the former follows from the latter by way of Limit Law 3), the Squeeze Theorem tells us that limx(0 f(x) exists and equals 0 as well.

[Omit:

Curious fact: If f(x) and g(x) disagree at just one point, limx(a f(x) and limx(a g(x) are the same for all a (by which I mean: for every a, either both limits are undefined, or both limits exist and are equal).

Stronger version: If f(x) and g(x) disagree at just a finite number of points, limx(a f(x) and limx(a g(x)are the same for all a.]

Questions on section 1.4?
