Section 1.4: Laws governing limits (continued)
Theorem 3: If f(x) ( g(x) when x is near a (except possibly at a) and limx(a f(x) and limx(a g(x) both exist, then 

limx(a f(x) ( limx(a g(x).

Question: Would this theorem remain true if we replaced “(” by “<” in both places? ...

..?..

..?..
No.  E.g., take f(x) = –x2 and g(x) = x2 and a = 0.  Then f(x) < g(x) for all x ≠ a but limx(a f(x) = limx(a g(x).

Theorem 4 (the Squeeze Theorem): If f(x) ( g(x) ( h(x) when x is near a (except possibly at a) and limx(a f(x) and limx(a h(x) both exist and are equal to L, then limx(a g(x) exists and equals L.

An application of the squeeze theorem to a crazy function: Let f(x) = x sin 1/x for all x ≠ 0 (with f(0) undefined).

The graph of f looks like this:
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Claim: limx(0 f(x) = 0.

Proof 1: See the notes from 9/19, when we proved the claim using the formal definition of limits.

Proof 2: Use the Squeeze Theorem: Since –|x| ( f(x) ( |x| for all x ≠ 0, and since limx(0 –|x| = 0 and limx(0 |x| = 0 (the latter claim follows from our assertions about piecewise-defined functions and one-sided limits, and the former follows from the latter by way of Limit Law 3), the Squeeze Theorem tells us that limx(0 f(x) exists and equals 0 as well.

Does this example remind you of a homework problem?

..?..

..?..

Keep this example in mind if you’re stuck on problem D!

[Omit:

Curious fact: If f(x) and g(x) disagree at just one point, limx(a f(x) and limx(a g(x) are the same for all a (by which I mean: for every a, either both limits are undefined, or both limits exist and are equal).

Stronger version: If f(x) and g(x) disagree at just a finite number of points, limx(a f(x) and limx(a g(x) are the same for all a.]

Questions on section 1.4?

Now we’re going to dig underneath section 1.4, to learn a bit about how we know that the Limit Laws are true.

To get an idea of how the Limit Laws can be proved, let’s prove a special case of Law 3: Suppose that limx(a f(x) exists and equals L.  Then limx(a [2f(x)] exists and equals 2L.

Proof: Let ( > 0 be given by Adam. 
Since limx(a f(x) = L, there exists ( > 0 such that every x satisfying 0 < |x – a| < ( satisfies |f(x) – L| < (.  With this choice of (, we see that every x satisfying 0 < |x – a| < ( satisfies |2f(x) – 2L| = |2(f(x) – L)| = 2 |f(x) – L| < (.

What do you think?

..?..

..?..

In that last step, we cheated.  The correct deduction is that |2f(x) – 2L| = |2(f(x) – L)| = 2 |f(x) – L| < 2(, which is not quite what we wanted.

So, that proof is wrong.  How can we fix it?

..?..

..?..

Proof:  Let ( > 0 be given by Adam.  Eve must find ( > 0 such that if x satisfies 0 < |x – a| < ( then |2f(x) – 2L| < (.

Note that |2f(x) – 2L| = 2 |f(x) – L|.

We have been told that limx(a f(x) = L, so, for any 

(1 > 0 there exists (1 > 0 such that if 0 < |x – a| < (1 then 

|f(x) – L| < (1.

Apply this to the particular case (1 = ( / 2.

For this (1, there is a (1.  (Why?

..?..

Because we’re told that limx(a f(x) = L.)
This is the value of ( that Eve should pick: ( = (1 ((1).

Check: If 0 < |x–a| < (, then 0 < |x–a| < (1, so 
|f(x) – L| < (1 = ( / 2, 
so 
|2f(x) – 2L| < 2(1 = (, 
which is what Eve needed in order to win.  Since Eve can do this no matter what ( > 0 Adam picks, Eve has a winning strategy, and the limit assertion is true.

Note what’s going on: We’re using the epsilon-delta machine for the function f as a “spare part” for constructing an epsilon-delta machine for the function 2f.

We don’t have to build the epsilon-delta machine for 2f from scratch.
[Now go through proofs of Law 1 and the Squeeze Theorem.  If time permits, go through proof of Theorem 3.]
