[Go through proofs of Law 1 and the Squeeze Theorem. ]

[Collect notes on section 1.5]

Section 1.5: Continuity

Key concept: Continuity.

A continuous (at a) function is one that satisfies the direct substitution property limx(a f(x) = f(a).  

Main points of the section? 

..?..

Main point #1: Most of the functions normally encountered in pre-calculus math are continuous.
Main point #2: Most ways of combining two continuous functions give functions that are continuous too.

Main point #3: If a function f is continuous, it satisfies the intermediate value theorem.

Definition: We say the function f(x) is continuous at a iff

(1) limx(a f(x) = f(a), i.e., in symbols, f(x) (f(a) as x(a.

Otherwise, we say f(x) is discontinuous at a.

Example 1: One of our limit laws tells us that (for all 

values a) limx(a x2 = a2, so the function f(x) = x2 is continuous at a for every a; that is, it is continuous at every point in its domain (in this case, the domain is R, the set of all real numbers).

Example 2: The function sqrt(x), whose domain is [0, (), is not continuous at 0, because it is not defined throughout a punctured interval {x: 0 < |x–0| < r}, no matter how small r is.

Example 3(a): The Heaviside function H(x) is not continuous at 0 (though it is continuous at every other value of x) because limx(0 H(x) does not exist (more specfically, the one-sided limits limx(0+ H(x) and limx(0​– H(x) exist but are unequal to each other).

Example 3(b): The function f(x) = H(x) H(–x) is not continuous at 0 because  limx(0 f(x) …

..?..

equals 0 but f(0) =

..?..

1.  

(This is called a removable discontinuity in f because if we changed the value of f(0) to be 0, the function would become continuous at 0.)
Theorem: f(x) is continuous at a iff for every ( > 0 there exists ( > 0 such that for all x with |x – a| < (, |f(x) – f(a)| < (.

(Note that the words after the “iff” look a lot like the definition of limits, except that we now have |x – a| < ( instead of 0 < |x – a| < (, and we now have f(a) instead of L.)

Theorem 6 of section 1.5 (which extends the Direct Substitution Property of section 1.4) says that every polynomial function, rational function, trig function, and root function is continuous at every point in its domain that stays away from the endpoints of its domain.  (Later on we’ll see that this property holds for exponential and logarithm functions too.)

(If a is an endpoint of the domain of f, and f is a polynomial function, rational function, trig function, or root function, then f is one-sidedly continuous at a; e.g., f(x) = sqrt(x) is defined for all non-negative x, and this function is continuous from the right at 0.)

E.g., f(x) = 1/x is defined for all x(0, so for all a(0, f(x) is defined in a neighborhood of a, so by Theorem 6, f is continuous at a, so limx(a 1/x = limx(a f(x) = f(a) = 1/a.

Here’s how we can use Theorem 6 to evaluate a limit: 

limx(1 (x2–1)/(x–1) = limx(1 x+1





   (since (x2–1)/(x–1) = x+1 for all x(1)





= 1+1 (by Theorem 6)





= 2.

Main point #2: Most ways of combining two continuous functions give functions that are continuous too.

If f and g are continuous at a, then so are f+g, f–g, fg, and f/g.

This statement is almost right.  What caveat did I fail to include? ...

..?..

We can only conclude that f/g is continuous at a if in addition to the hypotheses that f and g are continuous at a, we’re also given the side hypothesis limx(a g(x) ( 0, or equivalently, g(a) ( 0.  (These two versions of the side hypothesis are equivalent because we’re already assuming that g is continuous at a.)

We say: “Continuity is preserved by addition, subtraction, multiplication, and division of functions.”  And that’s  because limits are preserved by addition, subtraction, multiplication, and division of functions (see the Limit Laws).

