Section 1.5: Continuity (continued)
Fact: If f(x) is an algebraic function defined throughout an interval (a–r, a+r) (for some r > 0), then f(x) is continuous at a.
Example:  f(x) = sqrt(x2) = |x| is an algebraic function and is defined on the interval (0–1, 0+1) = (–1, 1), so it is continuous at 0.

Example: For any a > 0, f(x) = sqrt(x) is an algebraic function and is defined on the interval (a–a, a+a) = (0, 2a), so it is continuous at a.  (However, it is not continuous at 0.)
Limits behave well under composition of functions: 

Theorem 1.5.7: If limx(a g(x) = b and limx(b f(x) = c, then

limx(a f(g(x)) = c, provided that the function f is continuous at b.

Application: Evaluate limx(0 cos(sin(x)).

Answer: Put f(x) = cos x, g(x) = sin x, a = 0, and b = 0.

Since limx(a g(x) = limx(0 sin x = sin 0 = 0 = b (by the continuity of trigonometric functions), and since limx(b f(x) = limx(0 cos x = cos 0 = 1 = c (again by the continuity of trigonometric functions), and since f(x) = cos x is continuous at b = 0 (yet again by the continuity of trigonometric functions), all three required hypothesis of Theorem 1.5.7 are satisfied.

Therefore limx(0 cos(sin(x)) = limx(a f(g(x)) = c = 1.

In an upcoming homework you’ll see an example showing that the theorem becomes false if we delete the hypothesis “f is continuous at b”!

Extending the domain of a function

If a function f is not defined at x = a but has the property that limx(a f(x) = L, then it is natural to consider a new function F such that F(x) = f(x) for all x ≠ a and F(a) = L.  
Example 1: Let f(x) = (x2–1)/(x–1), with domain {x: x ( 1}.  Then limx(1 f(x) = 2, so we define


   {(x2–1)/(x–1)
for x ≠ 0

F(x) = {

           {     2


for x = 0.
Note that this is the same as the function F(x) = x+1.
Example 2: Let f(x) = x sin 1/x, with domain {x: x ( 0}.

Then limx(0 f(x) = 0, so we define


   {x sin 1/x  for x ≠ 0

F(x) = {

           {     0        for x = 0.

Note that this new function F is continuous on all of R. 

We call F the continuous extension of x sin 1/x to R.  


More generally we can consider the continuous extension of the function f(x) = xn sin 1/x to R for all exponents n ( 1.  These functions will serve as useful counterexamples when we study differentiation.
The first student who brings this sentence to my attention wins $1

Main point #3: The Intermediate Value Theorem.

We say that a function f is continuous on the closed interval [a,b] if and only if f is right-continuous at a, left-continuous at b, and two-sidedly continuous at every point in between.  That is, we say f is continuous on [a,b] iff 

f(a) = limx(a+ f(x), 

f(b) = limx(b– f(x), and 

f(c) = limx(c f(x) for all c strictly between a and b.

Intermediate Value Theorem: Assume f is continuous on the closed interval [a,b] [ask the class to say what this means!].  Suppose f(a) ( f(b), and let N be any number between f(a) and f(b).  Then there exists a number c in (a,b) such that f(c) = N.

[Invite the students to try to draw counterexamples, so they can get a feeling for why the IVT is true.  Make sure they see, via pictorial examples, that if we weaken the hypothesis by allowing f to be discontinuous at some point c in (a,b), then the claim becomes false; likewise, if we drop the assumption that f is continuous-from-the-right at a, or the assumption that f is continuous-from-the-left at b, then the claim becomes false.]

Application: Let f(x) = x5 + x , [a,b] = [0,1].

Is f is continuous on [a,b]?  [Have the class discuss this, paying attention to the endpoints as well.]

Note that f(a) = 0 < 2 = f(b).

Put N=1.  Since N lies between f(a) and f(b), the Intermediate Value Theorem tells us that there must exist a number c in (0,1) such that f(c) = 1, i.e., c5 + c = 1.

So we have used calculus to prove that there exists a solution to the fifth-degree equation c5 + c = 1.

It turns out that you can’t do this with just algebra.

That is, there is no “quintic formula” for solving this kind of 5th degree equation analogous to the quadratic formula for solving 2nd degree equations.

Computationally, one way you might try to find c (making use of the fact that f is an increasing function) is by “repeated bisection”: Given an interval I = [c–,c+] with f(c–) < 1 and f(c+) > 1 (so that the Intermediate Value Theorem tells us that I contains a solution to f(x) = 1), look at f(c() where c( is the midpoint (c–+c+)/2; if f(c() > 1, then replace I by the smaller interval [c–,c(], while if f(c() < 1, replace I by the smaller interval [c(,c+].

Either way, we get an interval that’s half as wide that still contains the c that we’re looking for.

Thus we successively find:

c lies in I1 = [1/2,1]

c lies in I2 = [3/4,1]

c lies in I3 = [3/4,7/8]

…

If we continue this, we get intervals I1, I2, I3, I4, … where In has width 2–n, all of which contain c.

This gives us the binary expansion of c.

Proving the Intermediate Value Theorem amounts to proving that infinite procedures like this converge to a number with the desired property.

How many real numbers lie in the intersection of the intervals I1, I2, I3, …?

The Archimedean Property says that there can’t be two of them (because they’d differ by less than 1, less than ½, less than ¼, etc., so they’d differ by 0, since no positive number is less than all of the numbers ½, ¼, …).

But how do we know that there are any of them at all?

(If you think it’s obvious that the intersection of these infinitely many intervals is non-empty, consider the intersection of the OPEN intervals

(0, 1/2), (0, 1/4), (0, 1/8), …

It can be deduced from the Archimedean Property that no real number lies in all of these intervals.)

So how do we know that there’s a real number in all of the intervals I1, I2, I3, …?

We need a new axiom for this.

For our purposes, the axiom will be that every binary or decimal expansion actually corresponds to a number.

From this axiom, the Intermediate Value Theorem follows.

In the case where f(x) is increasing, the proof isn’t that hard; the main ideas are already present in the way we narrow down on a root of the equation x5 + x = 1.  In the general case, the proof is harder, and we won’t have time to go into it.  In practice, what you do is find some interval I0 containing the unknown c such that f(x) is increasing on I0, and then start the bisection procedure from there.
Other key notions from section 1.5 that you’re responsible for:
removable discontinuity

infinite discontinuity

jump discontinuity

continuous from the right

continuous from the left

continuous on an interval 

Questions?
