- 1. This is false, as the dot product of two vectors is a scalar, not a vector.
- 2. False. For example, if $\mathbf{u} = \mathbf{i}$ and $\mathbf{v} = -\mathbf{i}$ then $|\mathbf{u} + \mathbf{v}| = |\mathbf{0}| = 0$ but $|\mathbf{u}| + |\mathbf{v}| = 1 + 1 = 2$.
- 3. False. For example, if $\mathbf{u} = \mathbf{i}$ and $\mathbf{v} = \mathbf{j}$ then $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{0}| = \mathbf{0}$ but $|\mathbf{u}| |\mathbf{v}| = 1 \cdot 1 = 1$. In fact, by Theorem 10.3.3, $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \cos \theta|$.
- 4. False. For example, $|\mathbf{i} \times \mathbf{i}| = |\mathbf{0}| = 0$ (see Example 10.4.2) but $|\mathbf{i}| |\mathbf{i}| = 1 \cdot 1 = 1$. In fact, by Theorem 10.4.6, $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$.
- 5. True, by Property 2 of the dot product. (See page 551.)
- **6.** False. Theorem 10.4.8 says that $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$. (See page 562.)
- 7. True. If θ is the angle between \mathbf{u} and \mathbf{v} , then by Theorem 10.4.6, $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta = |\mathbf{v}| |\mathbf{u}| \sin \theta = |\mathbf{v} \times \mathbf{u}|$. (Or, by Theorem 10.4.8, $|\mathbf{u} \times \mathbf{v}| = |-\mathbf{v} \times \mathbf{u}| = |-1| |\mathbf{v} \times \mathbf{u}| = |\mathbf{v} \times \mathbf{u}|$.)
- 8. This is true by Property 4 of the dot product.
- 9. Property 2 of the cross product tells us that this is true.
- 10. This is true by Theorem 10.4.8.
- 11. This is true by Theorem 10.4.8.
- 12. In general, this assertion is false; a counterexample is $\mathbf{i} \times (\mathbf{i} \times \mathbf{j}) \neq (\mathbf{i} \times \mathbf{i}) \times \mathbf{j}$. (See the paragraph preceding Theorem 10.4.8.)
- 13. This is true because $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} (see Theorem 10.4.5), and the dot product of two orthogonal vectors is 0.

14.
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{v} = \mathbf{u} \times \mathbf{v} + \mathbf{v} \times \mathbf{v}$$
 [by Theorem 10.4.8]
 $= \mathbf{u} \times \mathbf{v} + \mathbf{0}$ [by Example 10.4.2]
 $= \mathbf{u} \times \mathbf{v}$, so this is true.

- 15. This is false. A normal vector to the plane is $\mathbf{n} = \langle 6, -2, 4 \rangle$. Because $\langle 3, -1, 2 \rangle = \frac{1}{2}\mathbf{n}$, the vector is parallel to \mathbf{n} and hence perpendicular to the plane.
- 16. This is false, because according to Equation 10.5.8, ax + by + cz + d = 0 is the general equation of a plane.
- 17. This is false. In \mathbb{R}^2 , $x^2 + y^2 = 1$ represents a circle, but $\{(x, y, z) \mid x^2 + y^2 = 1\}$ represents a three-dimensional surface, namely, a circular cylinder with axis the z-axis.
- 18. This is false. In \mathbb{R}^3 the graph of $y=x^2$ is a parabolic cylinder (see Example 10.6.1). A paraboloid has an equation such as $z=x^2+y^2$.

- 19. False. For example, $\mathbf{i} \cdot \mathbf{j} = \mathbf{0}$ but $\mathbf{i} \neq \mathbf{0}$ and $\mathbf{j} \neq \mathbf{0}$.
- 20. This is false. By Corollary 10.4.7, $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ for any nonzero parallel vectors \mathbf{u} , \mathbf{v} . For instance, $\mathbf{i} \times \mathbf{i} = \mathbf{0}$.
- 21. This is true. If \mathbf{u} and \mathbf{v} are both nonzero, then by in , $\mathbf{u} \cdot \mathbf{v} = 0$ implies that \mathbf{u} and \mathbf{v} are orthogonal. But $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ implies that \mathbf{u} and \mathbf{v} are parallel (see). Two nonzero vectors can't be both parallel and orthogonal, so at least one of \mathbf{u} , \mathbf{v} must be $\mathbf{0}$.
- 22. This is true. We know $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ where $|\mathbf{u}| \ge 0$, $|\mathbf{v}| \ge 0$, and $|\cos \theta| \le 1$, so $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| |\cos \theta| \le |\mathbf{u}| |\mathbf{v}|$.
- 23. True. If we reparametrize the curve by replacing $u = t^3$, we have $\mathbf{r}(u) = u \mathbf{i} + 2u \mathbf{j} + 3u \mathbf{k}$, which is a line through the origin with direction vector $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.
- 24. True. Parametric equations for the curve are x = 0, $y = t^2$, z = 4t, and since t = z/4 we have $y = t^2 = (z/4)^2$ or $y = \frac{1}{16}z^2$, x = 0. This is an equation of a parabola in the yz-plane.
- 25. False. The vector function represents a line, but the line does not pass through the origin; the x-component is 0 only for t = 0 which corresponds to the point (0, 3, 0) not (0, 0, 0).
- 26. True. See Theorem 10.7.4.
- 27. False. By Formula 5 of Theorem 10.7.5, $\frac{d}{dt} \left[\mathbf{u}(t) \times \mathbf{v}(t) \right] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$.
- 28. False. For example, let $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$. Then $|\mathbf{r}(t)| = \sqrt{\cos^2 t + \sin^2 t} = 1 \implies \frac{d}{dt} |\mathbf{r}(t)| = 0$, but $|\mathbf{r}'(t)| = |\langle -\sin t, \cos t \rangle| = \sqrt{(-\sin t)^2 + \cos^2 t} = 1$.
- 29. False. κ is the magnitude of the rate of change of the unit tangent vector \mathbf{T} with respect to arc length s, not with respect to t.
- **30.** False. The binormal vector, by the definition given in Section 10.8, is $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t) = -[\mathbf{N}(t) \times \mathbf{T}(t)]$.
- 31. True. At an inflection point where f is twice continuously differentiable we must have f''(x) = 0, and by Equation 10.8.11, the curvature is 0 there.
- **32.** True. From Equation 10.8.9, $\kappa(t) = 0 \Leftrightarrow |\mathbf{T}'(t)| = 0 \Leftrightarrow \mathbf{T}'(t) = \mathbf{0}$ for all t. But then $\mathbf{T}(t) = \mathbf{C}$, a constant vector, which is true only for a straight line.
- 33. False. If $\mathbf{r}(t)$ is the position of a moving particle at time t and $|\mathbf{r}(t)| = 1$ then the particle lies on the unit circle or the unit sphere, but this does not mean that the speed $|\mathbf{r}'(t)|$ must be constant. As a counterexample, let $\mathbf{r}(t) = \langle t, \sqrt{1-t^2} \rangle$, then $\mathbf{r}'(t) = \langle 1, -t/\sqrt{1-t^2} \rangle$ and $|\mathbf{r}(t)| = \sqrt{t^2+1-t^2} = 1$ but $|\mathbf{r}'(t)| = \sqrt{1+t^2/(1-t^2)} = 1/\sqrt{1-t^2}$ which is not constant.
- 34. True. See Example 11 in Section 10.7.