[Collect notes and hand out time sheets; pay Dominic $1]
Section 2.4: The product and quotient rules (concluded)

The product rule: (f g)( = f (g + f g(.  

That is, if f ((a) and g((a) exist, then (f g)((a) exists and equals f ((a)g(a) + f(a)g((a).
[Show sketch of product rule, using rectangle of width f(t) and height g(t).]

Historical side note:

Here’s how Liebniz might have proved the product rule:

f ((t) = (f(t+dt) – f(t))/dt, i.e. f(t+dt) = f(t) + f ((t) dt
Likewise g(t+dt) = g(t) + g((t) dt.

(fg)((t) = ((fg)(t+dt) – (fg)(t))/dt

    = (f(t+dt)g(t+dt) – f(t)g(t))/dt

    = ((f(t) + f ((t) dt) (g(t) + g((t) dt) – f(t)g(t))/dt

    = (f(t)g((t) dt + f ((t)g(t) dt + f ((t) g((t) (dt)2))/dt
    = f(t)g((t) + f ((t)g(t) + f ((t) g((t) dt.

“Then we discard the infinitesimal error term f ((t) g((t) dt.”
[Omit this year]

Proof of the product rule: 

Recall that f ((x) = L is equivalent to 

((f(x+h) – f(x)) / h)  –  L  (  0  as  h(0.
Write (f(x+h) – f(x)) / h = f ((x) + ((h), so that ((h)(0 as h(0.  That is,


f(x+h) = f(x) + h(f ((x) + ((h)).

Likewise we can write


g(x+h) = g(x) + h(g((x) + ((h))

where ((h)(0 as h(0.

Then


f(x+h) g(x+h) = f(x) g(x) 





 + h f(x) (g((x) + ((h))





 + h g(x) (f ((x) + ((h))





 + h2 (f ((x) + ((h)) (g((x) + ((h))

so


(f(x+h) g(x+h) – f(x) g(x)) / h = 






    f(x) (g((x) + ((h))






+ g(x) (f ((x) + ((h))






+ h(f ((x) + ((h))(g((x) + ((h)).

Take the limit on the right-hand side, term by term, using the fact that ((h) and ((h) go to zero as h(0:


limh(0 f(x) (g((x) + ((h)) = f(x) g((x)


limh(0 g(x) (f ((x) + ((h)) = g(x) f ((x)


limh(0 h(f ((x) + ((h))(g((x) + ((h)) = 0 f ((x) g((x) = 0. 

So


limh(0 (f(x+h) g(x+h) – f(x) g(x)) / h =



f(x) g((x) + f ((x) g (x) + 0

and (f g)( = f (g + f g( as claimed.

The quotient rule: (f /g)( = (f (g – f g()/g2.

That is, if f ((a) and g((a) exist and g(a)(0, then (f /g)((a) exists and equals (f ((a)g(a) – f(a) g((a))/[g(a)]2.

Special case of the quotient rule (take f(x) = 1 for all x):

The reciprocal rule: (1/g)( = – g( / g2 .

That is, if g((a) exists and g(a) ( 0, then (1/g)((a) exists and equals – g((a) / [g(a)]2 .

Derivation of the reciprocal rule:

Applying the product rule to g ( (1/g), we get

(g ( (1/g))(  = g( ( (1/g) + g ( (1/g)(.

On the other hand,

(g ( (1/g))(  = 0

(since g ( 1/g  is the constant 1).  So

g( ( (1/g) + g ( (1/g)( = 0,

and solving for (1/g)( gives
(1/g)( = (– g( ( (1/g)) / g = – g( / g2.

Is this calculation a proof of the reciprocal rule? …

..?..

..?..

[Review the statement of the reciprocal rule.]

..?..

..?..

The calculation makes use of the unproved assumption that (1/g)( exists.  But how do we know 1/g is differentiable?

..?..

..?..

We don’t (if we haven’t proved the quotient rule yet)!  So the proof is invalid, or at the very least incomplete.

On the homework, I’ll ask you to derive the reciprocal rule as a consequence of the chain rule (which we’ll discuss tomorrow), by writing 1/g as h ( g where h(x) = 1/x  = x–1, and then I’ll ask you to use the reciprocal rule to derive the quotient rule by writing f / g as (f)(1/g).

Paradox: “Let x = 1.  Then x2 = 1.  Differentiating both sides, we get 2x = 0.  But this contradicts x = 1.”  What’s wrong with this? …

..?..

..?..
As in the case of the paradox I showed you last week, the confusion here concerns the context and domain of validity of the various equations.
The relation x2 = 1 does not hold for an INTERVAL of values of x, so it makes no sense to differentiate it.

Recall what we mean by “differentiating an equation”: If f and g are differentiable on an open interval I and f(x) = g(x) for all x in I, then f ((x) = g((x) for all x in I.

The procedure of differentiating an equation only makes sense if the left and right hand sides are indeed functions of x, taking values for all x in (a,b).

Here’s an even more piquant version of the “paradox”: 

“Let x = 1.  Differentiating both sides, we get 1 = 0.”

Here’s a paradox for you to think about for next time:

Write 

x2 = x + x + … + x (x added to itself x times).  Differentiating both sides, we get 

2x = 1 + 1 + … + 1 (1 added to itself x times), 

or 2x = x.
Section 2.5: The chain rule

Setting of chain rule:

Suppose (f ( g)(a) = f(g(a)) = f(b) = c.

We want to compute (f ( g)((a).
Chain Rule: (f ( g)( (a) = f ((g(a)) g((a); that is,

If f ((g(a)) exists and g((a) exists,

then (f ( g)( (a) exists and

(f ( g)((a) = f ((g(a)) g((a).

Don’t make the common mistake of writing the chain rule as (f (g)((a) = f ((a) g((a)!

Baby example of the chain rule:

f(y) = Ay + B ( f ( = A

g(x) = Cx + D ( g( = C
(f ( g) (x) = f(g(x)) = A(Cx+D)+B = (AC)x + (AD+B)


( (f ( g)( = AC
This is not a totally silly example, since the meaning of differentiability is that a function is well-approximated near a point by its tangent line at that point.

So, for non-linear functions f and g, we still have

f(y) ( Ay + B for y near b=g(a)

g(x) ( Cx + D for x ( a
(f ( g) (x) ( (AC)x + (AD+B) for x ( a
for numbers A,B,C,D that depend on where along the curve we’re looking (that is, that depend on a).

We won’t prove the chain rule this year.  Let’s just say it’s a matter of “putting the (’s and (’s into the (’s”.
