Section 2.8: Linear approximation and differentials

Main ideas?

..?..

..?..

Derivatives are good for finding approximate values of functions.
If f is a differentiable function in the vicinity of x = a, then: for x ≈ a, the (usually nonlinear) function

y = f(x) 

is well-approximated by the linear function 

y = L(x) = f(a)+f ((a)(x–a), 

aka the tangent line to the graph of y = f(x) at the point 

(a, f(a)).

We call L(x) the linearization of f at a.

Equivalently, f(a+h) is well-approximated by f(a) + f ((a)h when h ≈ 0.

Note that geometrically this is just saying that the graph of the function is close to the tangent line, for points on the graph near the point of tangency.

Example: For x≈100, y=f(x)=sqrt(x) is close to 

sqrt(100)+C(x–100) = 10+C(x–100),

where

C = f ((100) = (1/2)(100)–1/2 = 1/20.

E.g., sqrt(103) is close to 10+3/20=10.15.  Check this mentally:

(10.15)2 = 102 + 2(10)(.15) + (.15)2 = 100 + 3 + (.15)2
≈ 103. 

This is often expressed notationally using differentials.

These are variables written as dx and dy.

dx = x–a = (x
dy = L(x)–L(a) (not to be confused with (y = f(x)–f(a) !)

[Draw picture, or project picture from book with document camera: Figure 5 from page 137.]

We think of dx as an independent variable and dy as a dependent variable, since we can write dy = f ((a) dx.

(Check: 

L(x) = f(a)+ f ((a)(x–a) 

and 

L(a) = f(a)+ f ((a)(a–a) = f(a), 

so 

dy = L(x) – L(a) = f ((a)(x–a) = f ((a) dx, 

as claimed.)

That is, dy/dx = f ((a), where now the left hand side is a ratio of two genuine variables (one of which, namely dx, is quite natural, and the other of which, dy, is a bit artificial), instead of a single variable called “the derivative of y with respect to x”.

We now let a vary too, and call it x.

So x and dx are independent variables, 
and dy is the dependent variable defined as f ((a) dx, 
which implies dy/dx = f ((x).
On the other hand, (y/(x is not equal to f ((a), though it converges to f ((a) as (x(0.

One thing that’s confusing about differentials is that dy doesn’t just depend on dx; it also depends on x.

If you hold x fixed and send dx (which equals (x) to 0, then dy and (y (which are not equal) go to zero as well; and when dx = (x is fairly small, dy and (y are fairly close to each other, in the sense that dy/(y goes to 1.

What’s useful about differentials is that, when you handle them properly, you have (y/(x ≈ dy/dx when (x is small, and dx and dy are easier to work with.  (Note: (x=dx, and (y≈dy in the sense that (y/dy is close to 1 when dx is small.  See Figure 5 on page 137.)

Example (again): Let f(x) = sqrt(x) = x1/2, f ((x) = (1/2)x–1/2 = 

1 / (2 sqrt(x)).  Then, putting x = 100 and dx = 3, we get

f(x+dx) 
= f(x+(x)

= f(x) + (y
≈ f(x) + dy 

= f(x) + f ((x) dx
= sqrt(x) + (1 / (2 sqrt(x))) dx
= sqrt(100) + (1 / (2 sqrt(100))) (3)

= 10 + 3/20.

Section 2.8, Problem 24: Use differentials to estimate the amount of paint needed to apply a coat of paint 0.05 cm thick to a hemispherical dome with diameter 50 m.

Solution: For a hemispherical dome, V(r) = (2/3) ( r3.  The paint needs to fill a spherical shell of inner radius r and outer radius r+dr, where r = 25 m and dr = 0.05 cm. The volume of this spherical shell is (V = V(r+dr) – V(r).  We can approximate this by 

dV = V ((r) dr = 2 ( r2 dr = 2 ( (25 m)2 (0.0005 m)

     = 5(/8 m3 ≈ 1.96350 m3.

(You can check that (V = 0.62501( m3 ≈ 1.96353 m3,

so dV and (V are quite close in this case.  That’s because

dr is much less than r.)

One application of differentials is to the estimation of errors.

Problem: Suppose we know that a hemispherical dome has radius 25 m, plus or minus about 0.05 cm.  How accurately do we know the volume of the dome?

Solution: Write the true radius as r+dr, where r = 25 m and dr = the measurement error, with |dr| no more than 0.05.  If we estimate the volume of the hemisphere by 

V(r) =  (2/3) ( r3 = (2/3) ( (25 m)3 ≈ 32,724.9 m3, 

our error will be (V = V(r+dr) – V(r), which we can approximate by dV =  2 ( r2 dr, which is no greater than 

2 ( (25 m)2 (0.0005 m) ≈ 1.96 m3 as before.

That is, the relative error (V/V will be no more than about

(1.96 m3) / (32,700 m3) ≈ 0.00006 = 0.006%.

Here’s an additional True-False question related to chapter 2 for you to prepare an answer to for Thursday:

“13.”  “If f(x) is defined for all x, with 

limh(0 (f(0+h)(f(0))/h = 3,  then limh(0 f(h) = f(0).”

Additional topic: “How weird can a derivative be?”

If we put



{ x2 sin 1/x


for x ( 0 and

f(x)   =
{



{ 0




for x = 0,

then we get



{ 2x sin 1/x – cos 1/x
for x ( 0 and


f ((x)   =
{



{ 0




for x = 0,

where the second case follows from what we did in the last couple of lectures (using the squeeze theorem).

Note that the derivative f ((x), although defined everywhere, is not continuous at x = 0!  (The cos 1/x term in f ((x) causes f ((x) to fluctuate between values close to –1 and values close to +1, no matter how close x gets to 0; so, if Adam takes ( = 1/2, say, then no ( > 0 that Eve can pick, however small, will have the property that, by confining x to lie between 0–( and 0+(, Eve can force f ((x) to lie between 

0–1/2 and 0+1/2, or indeed, to lie between L – 1/2 and L + 1/2, for any value of ​L at all.)

Weird!

Let’s see what f (​​​ looks like:

[image: image1.emf]









This looks pretty discontinuous at 0.  Let’s see what f looks like:
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Moral: The derivative of a function that’s differentiable at a need not be continuous at a!

However, the mathematician Darboux proved that the derivative can only be discontinuous in this sort of way; in particular, it can’t have jump discontinuities.

Moral: “Derivatives can jitter but they can’t jump.”

