What is limn(( (1–1/n)n?

..?.. 

..?..

e–1 = 1/e.

Proof #1: Put x = –1 in ex = limn(( (1+x/n)n.

Proof #2: Since lims(0– (1+s)1/s = e, we also have 

lims(0– (1+s)–1/s = lims(0– [(1+s)–1/s]–1 = e–1
(as a consequence of the direct substitution property of limits, for the function f(t) = t–1), and now putting s = –1/n we get 

limn(( (1–1/n)n = e–1.
NEXT TIME WRITE A BETTER VERSION OF PROOF #2 THAT JUST USES THE DIVISION THEOREM FOR LIMITS!

[Collect summaries of 3.2]

Section 3.2: Inverse functions
Main ideas?

..?..

..?..

A function y=f(x) is called a one-to-one function if f(x1) ( f(x2) whenever x1 ( x2.

More precisely, a function y = f(x) with domain A and range B is one-to-one iff for all x1, x2 in A with x1 ( x2, we have f(x1) ( f(x2).

Examples and non-examples: 

The function y = x3 from R to R ... 

..?..

..?..

is one-to-one.  
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The function y = x2 from R to R ... 

..?..

..?..

is not one-to-one, because (for instance) 32 = (–3)2 even though 3 ( –3.
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The function y = x2 from [0,() to [0, () ... 

..?..

..?..

is one-to-one.
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The function y = x2 from (–(,0] to [0, () ... 

..?..

..?..

is one-to-one.
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Horizontal Line Test: A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Let f be a one-to-one function with domain A and range B.  Then its inverse function (denoted f –1) is the function with domain B and range A satisfying

f –1 (y) = x ( f(x) = y
Examples:

The inverse of the function f(x) = x3 from R to R is ...

..?..

..?..

the function f –1(x) = x1/3.

The inverse of the function f(x) = x2 from R to R ...

..?..

..?..

does not exist, since f  is not one-to-one on R!

The inverse of the function f(x) = x2 from [0,() to [0,() is ...

..?..

..?..

the function f –1(x) = x1/2.

The inverse of the function f(x) = x2 from (–(,0] to [0,() is ...

..?..

..?..

the function f –1(x) = –x1/2.

If you have the graph of the one-to-one function f, you can obtain the graph of the function f –1 by flipping the graph of f over the line y = x.

Another word for a one-to-one function is an invertible function.

If f is an invertible function with domain A and range B, then for all a in A, f –1(f(a)) = 

..?..

..?..

a, and for all b in B, 

..?..

..?..

f(f –1(b)) = b.  

(Example: For all x in [0,(), sqrt(x2) = x and (sqrt(x))2 = x.)

Another way to think about inverse functions: to compute values of f –1, use the graph of y=f(x), but switch the roles played by the two axes: To compute f –1(b), find the point b on the y-axis, draw the horizontal line y=b, and find its unique point P of intersection with the curve y=f(x); the x-coordinate of P is the unique value a satisfying f(a)=b.

[Draw the example y=x3.]

Fact: If f is an increasing function then f is one-to-one.  (Note: Here “increasing” means “strictly increasing”.)

Proof: If x1, x2 are in the domain of f with x1 < x2, then since f is increasing, f(x1) < f(x2), so that f(x1) ≠ f(x2).

Likewise, every decreasing function is one-to-one.

Is every one-to-one function on an interval I either increasing or decreasing? ...

..?..

..?..

No; e.g., look at the function f with f(x) = 1/x for x other than 0 and f(0) = 0, on the interval [–1,1].

Can we rescue the idea of a converse somehow?  More specifically, can we make the converse true by adding an extra hypothesis? … 

..?..  

..?..

Theorem: If f is a continuous function whose domain is some interval I, and f is one-to-one, then f is either increasing on all of I or decreasing on all of I.  In either case, the inverse function f –1 is also continuous.  (We’ll prove this later using the Mean Value Theorem.)

What about differentiability?

..?..

..?..

Theorem 7: Let f  be a one-to-one differentiable function, and let a=f –1(b) for some number b in the range of f.  

If f ((a) ( 0, f –1 is differentiable at b, and 

(f –1)((b) = 1 / f ((a).

Example: Let f(x) = x3, b = 8, and a = f –1(8) = 2.  f ((2) = 3((2)2 = 12 ( 0, so (f –1)((8) = 1/12.

Check: f –1(x) = x1/3, so (f –1)( (x) = (1/3)x–2/3 and (f –1)( (8) = (1/3)8–2/3 = (1/3)(1/4) = 1/12.

Keep in mind that f –1 and 1/f denote very different functions!  E.g., if f(x) = x3, then (1/f)(x) = x–3, but f –1(x) =  x1/3.)

Intuition for Theorem 7: When we flip the graph of the function over the line y = x, we flip the tangent line of y = f(x) at (a, b) over the line y = x to become the tangent line of y = f –1(x) at (b, a), so we take the reciprocal of its slope (since the rise becomes the run and vice versa).

More intuition: We have b = f(a), a = f –1(b).  Picture a secant line for the function f, joining (a, b) to some nearby point (a+(a, b+(b), with slope (b/(a.  This corresponds to a secant line for the function f –1, joining (b,a) to 

(b+(b, a+(a), with slope (a/(b.  As (a and (b approach 0, the reciprocal relationship between the slopes always holds, so it holds in the limit, and the slope of the tangent to f –1 at (a, b) is the reciprocal of the slope of the tangent to f at (b, a).

Proof of Theorem 7: See Stewart, p. 156.

Check that the theorem is consistent with what we know: For convenience, write g = f –1.  We have f(g(x)) = x, so by the chain rule, f ((g(x)) g((x) = 1, whence g((x) = 1/f ((g(x)).  In particular, putting x = b and g(x) = a, we have 

g((b) = 1/f ((a).

Why isn’t the preceding check a proof of Theorem 7? ... 

Think about this for next time!
