[Collect summaries of section 3.4]

Do I owe anyone a dollar?

Section 3.4: Exponential growth and decay

Let f(t) = # of bacteria in a colony at time t (where t is measured in seconds).

Assume the colony grows, with bacteria growing but no bacteria dying.

Then f ((t) = rate at which new bacteria are added to the colony (a positive function of t).

It’s reasonable to assume that until the colony starts to run out of resources (food, growing-space),  f ((t) will be proportional to f(t).

That is, f ((t) = k f(t) for some constant k > 0.

Let g(t) = # of atoms of plutonium in a sample at time t.
Plutonium decays, so the sample will shrink, with g((t) < 0.

–g((t) = rate at which atoms in the sample decay.

–g((t) = k g(t) for some constant k > 0.

Equivalently, g((t) = k g(t) for some constant k < 0.

f(t) and g(t) are example of exponential growth and exponential decay, respectively.

One feature of exponential growth is a consistent doubling time; if the population doubles from time 0 to time t, then it’ll exactly double again from time t to time 2t, and double again from time 2t to time 3t, etc.

Likewise, one feature of exponential decay is a consistent half life: if the sample halves from time 0 to time t, then it’ll halve again from time t to time 2t, and halve again from time 2t to time 3t, etc.

Let’s see why.

Note that both exponential growth and exponential decay processes satisfy differential equations of the form 

dy/dt = ky 

for some k (k > 0 for growth, k < 0 for decay).

What functions y(t) satisfy this equation?

Trivial solution: y(t) = 0 for all t.

To find other solutions, use logarithmic differentiation:

(d/dt) ln |y(t)| = ... 

..?..

..?..

(y()(1/y) = y( / y = (ky) / y = k
So the time-derivative of ln |y(t)| is a CONSTANT.

What kind of function has a constant derivative? ...

..?..

..?..

A linear function!

(We’ll prove in section 4.2 that there aren’t any other functions with this property.)

Hence ln |y(t)| = At + B for suitable constants A,B.

What is A? ... 

..?..

..?..

k.

ln |y(t)| = kt + B.

|y(t)| = exp (kt + B) = exp(kt) exp(B).

y(t) = ( exp(B) exp(kt) = C exp(kt) for some constant C,

where C is positive or negative.

Combining this with the trivial solution y(t) = 0 for all t, we get the general solution 

dy/dt = ky   (   y(t) = C exp(kt) 

where C could be any real number (positive, negative, or zero).
To interpret the factor C, plug in t=0:

y(0) = C.

So C is the value of y at time 0, and we can write


dy/dt = ky   (
  y(t) = y(0) exp(kt).

(See Theorem 2 on page 171 of Stewart.)

Doubling-time: Assume k > 0, and let t* = (ln 2) / k.
Then for every t, y(t+t*) = 2 y(t).

Proof: y(t+t*) = y(0) exp(k(t+t*)) = y(0) exp(kt+kt*) = 

y(0) exp(kt) exp(kt*) = y(t) exp(ln 2) = 2 y(t).

[image: image1.emf]
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Half-life: Now suppose k < 0, and let t* = (ln 2) / (–k).

Then for every t, y(t+t*) = y(t)/2.

Proof: y(t+t*) = y(0) exp(k(t+t*)) = y(0) exp(kt+kt*) = 

y(0) exp(kt) exp(kt*) = y(t) exp(–ln 2) = y(t)/2 

(since exp(–ln 2) = exp(ln 1/2) = 1/2).

[image: image2.emf]
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Some exponential decay processes don’t decay to zero, but decay to some other value: If you take an apple pie out of the oven and an apple pie out of the freezer and put them on the table, both will approach room temperature.  

[image: image3.emf]
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Let T(t) be the temperature of an object at time t and Ts be the (constant) temperature of the surroundings.  Newton’s law of warming and cooling says that T(t) satisfies the differential equation dT/dt = k(T–Ts) (“the rate of warming/

cooling of an object is proportional to the temperature difference between the object and its surroundings”), where the constant k is negative.  [Discuss why it doesn’t make sense for k to be positive.]

Write y = T–Ts; then dy/dt = dT/dt (since Ts is constant), so dy/dt = ky, and we’re back to simple exponential decay: y = C exp kt for some C.

Hence T = Ts  + y = Ts + C exp kt.

C is positive when we’re discussing cooling, and negative when we’re discussing warming.

Formula for C: Plugging t=0 into the equation for T(t), we get T(0) = Ts + C, so C = T(0) – Ts.  

So


T(t) = Ts + (T(0) – Ts) exp kt.

Back to population models

Recall: If we have a population in which birth occurs, but not death, and there is no interaction between members of the population, then the size of the population at time t (written as P(t)) satisfies the differential equation

P((t) = k P(t) for some constant k > 0.

If we have a population in which individuals are being born and dying, then P(t) (the population at time t) satisfies the differential equation P((t) = birth rate minus death rate.

Under normal conditions, we expect both the birth rate and the death rate to be proportional to P(t).  So we have a differential equation of the form

P((t) = b P(t) – d P(t) = (b–d) P(t).

This is of the form dy/dt = ky, with y(t) = P(t) and k = b–d.

If the relative birth rate b exceeds the relative death rate d, P(t) will undergo exponential growth. 

If b is less than the d, P(t) will undergo exponential decay. 

Such models can be good models of populations for moderate lengths of time (e.g., for human populations, decades).

Over longer periods, the model needs to be corrected to allow for changes in health, immigration or emigration patterns, wars, epidemics, etc.

Such models aren’t so good in the long term, and aren’t good at long-term extrapolation into either the distant past or the distant future.

Interest

If you put $100 in the bank and it’s compounded yearly with 12% annual interest (by the way, if you know of a bank that does this, please let me know!), after 1 year you get your original $100 plus $12 interest, for a total of $100 times 1.12 = $112.

If your money is compounded quarterly (i.e., 4 times per year) with 3% interest per quarter, after 1 year you get $100 times 1.03 times 1.03 times 1.03 times 1.03, or 

$100 ( (1+.12/4)4 ( $112.55.

If your money is compounded monthly, after 1 year you get

$100 ( (1+.12/12)12 ( $112.68.

If your money is compounded continuously, after 1 year you get 

limN(( $100 ( (1+.12/N)N = $100 exp .12 ( $112.75.

Here we are using the key fact that limN(( (1+r/N)N = er.

[For 2012, skip from here to end of section 3.4.]

Why does limN(( (1+r/N)N equal er?

(It’s clearly true if r = 0, so let’s restrict to the case r ( 0.)

One way to prove this is to reduce it to our definition of the number e as lims(0  (1+s)1/s, using s = r/N and N = r/s.

limN(( (1+r/N)N 

= lims(0+ (1+s)r/s (see Remark 1 below)
= lims(0+ [(1+s)1/s]r
= [lims(0+ (1+s)1/s]r (see Remark 2 below)

= er.

Remark 1: Exercise 59 in section 1.6 asks you to show that 
limx(( f(x) = limt(0+ f(1/t)

and


limx(–( f(x) = limt(0– f(1/t) 

(if these limits exist).  This remains true if we replace 1/t by C/t for any positive constant C.  That is the principle being used here.  (We won’t prove it in 92.141 this year, but you’re allowed to use it on all homework problems.)  

Remark 2: For any fixed real number r, write f(x) = xr = exp(r ln x); since ln, the multiply-by-r function, and exp are all continuous, the composition of these functions is continuous too (by Theorem 8 of section 1.5). Hence by Theorem 7 of section 1.5, lims(0 f(g(s)) = f(lims(0 g(s)).

Note that Stewart slightly fudges these issues on page 176. 

He’s tacitly making use of the fact that for any real number c, the function f(x) = xc is continuous on (0,(). 

Questions?
