True-False for Chapter 3

- 1. True. If f is one-to-one, with domain \mathbb{R} , then $f^{-1}(f(6)) = 6$ by the first cancellation equation in (3.2.4).
- **2.** False. By Theorem 3.2.7, $(f^{-1})'(6) = \frac{1}{f'(f^{-1}(6))}$, not $\frac{1}{f'(6)}$ unless $f^{-1}(6) = 6$.
- 3. False. For example, $\cos \frac{\pi}{2} = \cos \left(-\frac{\pi}{2}\right)$, so $\cos x$ is not 1-1.
- **4.** False. It is true that $\tan \frac{3\pi}{4} = -1$, but since the range of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we must have $\tan^{-1}(-1) = -\frac{\pi}{4}$.
- **5.** True, since $\ln x$ is an increasing function on $(0, \infty)$.
- 6. True. $\pi^{\sqrt{5}} = (e^{\ln \pi})^{\sqrt{5}} = e^{\sqrt{5} \ln \pi}$
- 7. True. We can divide by e^x since $e^x \neq 0$ for every x.
- **8.** False. For example, $\ln(1+1) = \ln 2$, but $\ln 1 + \ln 1 = 0$. In fact $\ln a + \ln b = \ln(ab)$.
- 9. False. Let x = e. Then $(\ln x)^6 = (\ln e)^6 = 1^6 = 1$, but $6 \ln x = 6 \ln e = 6 \cdot 1 = 6 \neq 1 = (\ln x)^6$. What is true, however, is that $\ln(x^6) = 6 \ln x$ for x > 0.
- 10. False. $\frac{d}{dx}(10^x) = 10^x \ln 10$, which is not equal to $x10^{x-1}$.
- 11. False. $\ln 10$ is a constant, so its derivative, $\frac{d}{dx} (\ln 10)$, is 0, not $\frac{1}{10}$.
- 12. True. $y = e^{3x} \implies \ln y = 3x \implies x = \frac{1}{3} \ln y \implies \text{ the inverse function is } y = \frac{1}{3} \ln x.$
- 13. False. The "-1" is not an exponent; it is an indication of an inverse function.
- 14. False. For example, $tan^{-1} 20$ is defined; $sin^{-1} 20$ and $cos^{-1} 20$ are not.
- **15.** True. See Figure 3.6.2.
- 16. False. L'Hospital's Rule does not apply since $\lim_{x \to \pi^-} \frac{\tan x}{1 \cos x} = \frac{0}{2} = 0$.