[Collect summaries of sectiona 4.1 and 4.2]

Section 4.2: The Mean Value Theorem

Main ideas?

..?..

..?..

Mean Value Theorem: [Put this on the board]

Let f  be a function on the interval [a,b] (with a < b) that satisfies

1. f  is continuous on the closed interval [a,b]

2. f  is differentiable on the open interval (a,b).

Then there is a number c in (a,b) such that

f ((c) = (f(b)–f(a))/(b–a).

Example: Suppose a horse finishes a 1-mile race in 2 minutes, and suppose that the position of the horse is given by f(t), where t is time and the function f is continuous on [0,1] and differentiable on (0,1).

The Mean Value Theorem tells us that there must exist some instant at which the horse’s velocity was exactly

(1 mile)/(2 minutes) = 0.5 miles/minute = 30 miles/hour (in the direction from the starting line to the finish line); at that instant the horse’s speed is 30 miles/hour.

Note that f(b)–f(a) is the NET DISPLACEMENT that the horse undergoes, not to be confused with the DISTANCE travelled by the horse.  (We could have a silly example where the horse runs halfway down the course, gets confused, and runs back to the starting line; then it has travelled a distance of 1 mile, but its net displacement is 0.)  Distance is always non-negative, but displacement can be positive, zero, or negative.

In our horse-race example, f(t) is the position (measured in miles) of the horse at time t (measured in minutes) and f ((t) is the velocity of the horse at time t.  a = 0, b = 2, f(a) = 0, f(b) = 1, and (f(b)–f(a))/(b–a) = (1–0)/(2–0) = 0.5.

Example: A particle is at position 15 cm at time 0 sec and position 12 cm at time 6 sec.  If the particle’s position at time t is assumed to be a differentiable function of t, what does the Mean Value Theorem tell us? …

..?..

..?..

Over the course of 6 seconds, the particle undergoes a displacement of –3 centimeters, so the Mean Value Theorem tells us that there must exist an instant when the particle is travelling with velocity (12–15)/(6–0) cm/sec, i.e. –0.5 cm/sec, i.e. 0.5 cm/sec to the left.

To see why the Mean Value Theorem is intuitively reasonable, note that (f(b)–f(a))/(b–a) is the slope of the secant joining (a,f(a)) and (b,f(b)).  This secant line touches the curve y = f(x) in at least two points.  If we imagine sliding the secant line up or down, there ought to be some position where it becomes an actual tangent line.  If we write the intersection of the tangent line with the curve as (c,f(c)), then this is exactly the point c that we need.

Consequences of Mean Value Theorem:

Theorem 5 (the “Constant Value Theorem”): If f is continuous on [a,b] and differentiable on (a,b) and the derivative of f on (a,b) is constantly 0, the function f is constant on [a,b].

Proof: Take a(< b( in [a,b].  Since f  is continuous on [a(, b(] and differentiable on (a(, b(), the Mean Value Theorem applied to f on [a(, b(] tells us that there exists c in (a(, b() such that

f ((c) = (f(b()–f(a())/(b(–a().

But since c is in (a,b), and since the derivative of f on (a,b) is constantly 0, we have 

f ((c) = 0.

Combining the two equations, we have (f(b()–f(a())/(b(–a() = 0, so that f(b()–f(a() = 0, implying f(b()=f(a().  Since a( and b( were arbitrary values in [a,b], f must be constant on [a,b].

Theorem: If f is continuous on [a,b] and differentiable on (a,b) and the derivative of f on (a,b) is constant, the function f is linear on [a,b].

Proof: Suppose the derivative of f  is the constant C.  Then the derivative of f(x) – Cx is C – C = 0, so by Theorem 5, f(x) – Cx must be a constant; call it D.  Then f(x) = Cx + D for all x in [a,b].

Theorem: If the derivative of a function f on some closed interval [a,b] is f  itself, then f(x) = C exp(x) for some C.

Proof: Suppose the derivative of f  is f itself. Then the derivative of f(x) e–x is 

f ((x) e–x – f(x) e–x = f (x) e–x – f(x) e–x = 0, 

so by Theorem 5,  f(x) e–x must be a constant; call it C.  Then f(x) e–x = C, implying f(x) = Cex. 

Rolle’s Theorem: [Put this on the board.]

Let f  be a function that satisfies

1. f is continuous on the closed interval [a,b],

2. f is differentiable on the open interval (a,b),

3. f(a)=f(b).

Then there is a number c in (a,b) such that f ((c) = 0.

Proof: …

..?..

..?..

When f(a)=f(b), (f(b)–f(a))/(b–a) = 0, so Rolle’s Theorem is just a special case of the Mean Value Theorem.

But you can also derive the Mean Value Theorem from Rolle’s Theorem, as in Stewart.  (I’ll discuss this later if time permits.)

How to prove Rolle’s Theorem: 

By the Extreme Value Theorem, f has a global maximum and a global minimum on [a,b], and they can’t both be endpoints.  

So f has a local maximum or a local minimum somewhere in (a,b), say at c.

By Fermat’s Theorem, c is a critical number of f.  

This means that f ((c) is either undefined or 0.  

But f is differentiable at c (since f is differentiable on the whole interval (a,b): use property 2), so f ((c) = 0.

What’s wrong with this proof?

..?..

..?..

Why can’t f have a global maximum at one endpoint and a global minimum at the other?

..?..

..?..

It can, but then f is a constant function, so that f ((c) = 0 for every c in (a,b).

Slippery road ahead: 

Do you believe the following assertion?

“If f(a) = f(b) then there exists c in (a,b) such that f (((c) = 0.”

..?..

..?..

Here’s a proof; let me know what you think of it.

“Since f(0) = f(1), Rolle’s Theorem tells us that f ((c) = 0.  Therefore f is constant, so f (((c) = 0.”

..?..

..?..

Can anyone give a counterexample to the assertion?

..?..

..?..

f(x) = x2 with a = –1 and b = 1.

Now we can all see that the assertion is false.

So what’s wrong with the purported proof?

..?..

..?..

The proof is confusing the assertion “f ((c) = 0 for SOME c” with the assertion “f ((c) = 0 for ALL c.” 

To avoid falling into traps like this, include quantifiers in your proofs!

They’re not just excess verbiage; they’re context-markers that keep you from making conceptual mistakes.

“Opening the hood” of the Mean Value Theorem:

Show that NEITHER of the two hypotheses in the Mean Value Theorem can be dispensed with.

That is, show that if you drop either of the two hypotheses, the Mean Value Theorem becomes false.

For simplicity, let’s focus on the case f(a) = f(b).

Can we drop condition 1? …

..?.. 

..?..

No; e.g., take the function on [0,1] given by



{x2 for 0 < x ≤ 1

f(x) =
{1  for x = 0.

Can we drop condition 2? ... 

..?..

..?..

No; e.g., take f(x) = |x| on [–1,1].

For the next homework, you’ll use the Mean Value Theorem to show that the function f(x) = 2x + sin x is invertible.  Hint: Start by taking arbitrary real numbers x1 < x2 and apply the Mean Value Theorem to f on the interval [x1,x2]. 
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How to prove the Mean Value Theorem from Rolle’s Theorem:

If the function f(x) satisfies the hypotheses of the Mean Value Theorem, then 

1: the function h(x) = f(x) – f(a) – [(f(b)–f(a))/(b–a)](x–a) satisfies the hypotheses of Rolle’s Theorem, 

2: which implies that h(x) satisfies the conclusion of Rolle’s Theorem, 

3: which implies that f(x) satisfies the conclusion of the Mean Value Theorem (using the same value of c).

Intuition: The “helper function” h(x) is the difference between f(x) and the linear function whose graph is the secant line through (a,f(a)) and (b,f(b)).

See Stewart for details.
