[Collect summaries of section 4.3; collect homework and time-sheets; hand out time-sheets.]

Section 4.3: Derivatives and the shapes of graphs

Main ideas?

..?..

..?..

The geometric meaning of the first derivative

Increasing/decreasing test: Suppose f is continuous on [a,b] and differentiable on (a,b).  If f ( is positive on (i.e., throughout) the interval (a,b), then f is (strictly) increasing on [a,b]; if f ( is negative on (a,b), then f is (strictly) decreasing on [a,b].

Proof: Let’s just prove the first claim (the second is similar).  Take x1, x2 in [a,b] with x1 < x2.  [Draw a picture.]  Since f  is continuous on [x1, x2] and differentiable on 

(x1, x2), the Mean Value Theorem says there must exist some point c in (x1, x2) with 
f ((c) = (f(x2)–f(x1))/(x2–x1).  
But since f ((x) > 0 for all x in (a,b), we have 
f ((c) > 0.

Combining these two facts we see that

(f(x2)–f(x1))/(x2–x1) > 0,

and since x2– x1> 0, we have f(x2)–f(x1) > 0, so f(x2) > f(x1).  Hence f  is strictly increasing on [a,b].

What can be concluded if we replace the hypothesis “f ( is positive on (a,b)” by the weakened hypothesis “f ( is non-negative on (a,b)”?  Do we get a variant of the preceding claim with a weakened conclusion? …

..?..

..?..

Yes; we can conclude that f  is weakly increasing on [a,b].

How does the proof go? … (Modify the proof as we go.)
..?..

..?..

Replace a bunch of >’s by (’s, and “strictly” by “weakly”.

First Derivative Test: Suppose that c is a critical number of a continuous function f, and suppose that f ((x) is defined for all x in a punctured neighborhood of c (but not necessarily at c itself).

(a) If f ( changes from positive to negative at c, then f  has a local maximum at c.

(b) If f ( changes from negative to positive at c, then f  has a local minimum at c.

(c) If f ( is positive on both sides of c or negative on both sides of c, then f  has no local maximum or local minimum at c.

Example: f(x) = cos x,  c = 0.   f ((x) = – sin x which is positive for –( < x < 0 and negative for 0 < x < (, so f  has a local maximum at 0.

Example: f(x) = |x|, c = 0.  f ((x) = –1 < 0 for x < 0 and 

f ((x) = 1 > 0 for x > 0, so f has a local minimum at 0.  (Note that in this case we can apply “the first derivative test at 0”, even though the derivative of f  isn’t defined at 0!  That’s because the first derivative test is about the behavior of

f ((x) as x approaches c from the left and from the right, NOT about the behavior of f ((c) itself.)

Example: f(x) = x4, c = 0.  f ((x) = 4x3 which is negative for x < 0 and positive for x > 0, so f has a local minimum at 0.

Example: f(x) = x3, c = 0.  f ((x) = 3x2 which is positive for both x < 0 and x > 0, so f has no local maximum or minimum at 0.

Example: f(x) = x1/3.  f ((x) = (1/3)x–2/3 which is undefined at x = 0, so 0 is a critical point.  Since f ((x) = (1/3)(x–1/3)2 > 0 for all x ( 0, f  has neither a local maximum nor local minimum at x = 0.  (Note that here, as in the case of |x|,  

f ((x) is undefined at x = 0, but f ((x) is defined for all x near 0, so the First Derivative Test applies.)

Example: f(x) = (x2–1)2 = x4 – 2x2 + 1.  

f ((x) = 4x3 – 4x, which vanishes at +1, 0,  –1.

Write f ((x) = 4(x+1)(x)(x–1).

If x < –1: f ((x) = (neg.)(neg.)(neg.) = negative

If –1 < x < 0: f ((x) = (pos.)(neg.)(neg.) = positive

If 0 < x < 1: f ((x) = (pos.)(pos.)(neg.) = negative

If 1 < x: f ((x) = (pos.)(pos.)(pos.) = positive

So f ( goes from negative to positive as x passes through –1,

f ( goes from positive to negative as x passes through 0,

and f ( goes from negative to positive as x passes through 1.

Hence f has a local minimum at –1, a local maximum at 0, and a local minimum at 1.
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