[Collect summary of section 4.5; return HW.]  

Section 4.5: Optimization problems

Basic problem: what values of x lead to the largest or smallest possible values of f(x)?

A global maximum must be either an endpoint or a local maximum, and a local maximum must be at a critical point, so the x that maximizes f(x) must either be an endpoint of the domain of f or must be a value of x for which f ((x) is either undefined or 0.

Problem: What rectangle with perimeter 4 inches has greatest area?

Goal: Maximize …

..?..

..?..

A = xy (the objective function) subject to …

..?..

..?..

2x + 2y = 4 (the constraint equation).

Write y in terms of x: …

..?.. 

..?..

y = 2 – x (for 0(x(2) 
A(x,y) = A(x) = x(2 – x) = 2x – x2
Critical points: dA/dx = 2 – 2x, which is defined for all x and equals 0 when x = 1 and y = 2 – 1 = 1 

What kind of critical point is (x,y) = (1,1)?

..?..

..?..

d2A / dx2 = – 2 < 0 ( local maximum value A(1) = 1

Endpoints: A(0) = A(2) = 0 < 1.
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So the rectangle of perimeter 4 with greatest area is a square.

The first derivative test applies too: 2 – 2x is positive when x < 1 and negative when x > 1, so A has a local maximum at x=1.

Also note that to decide what kind of critical point 1 is, we could also use the test-point method with test-points 0 and 2.

The same method shows that for any P > 0, the rectangle with perimeter P that has the greatest area is a P/4–by–P/4 square.

We don’t actually need to classify the critical points for optimization problems in which the domain is a closed interval: The Closed Interval Method of section 4.1 requires only that we find all the critical points (and the endpoints) and compare the associated values of f, but we do not need to classify the critical points.

So, why classify critical points?

(a) It helps us graph the function that we’re trying to maximize/minimize, which corroborates our calculations or helps us find errors.

(b) For a function whose domain is not a closed interval, the Closed Interval Method does not apply.

Problem: What rectangle with perimeter 4 inches has smallest area?

..?..

..?..

It depends.  If you allow a rectangle to have sides of length 0 (that is, if we allow the domain of our function to include the endpoints x=0 and x=2), then the answer is 0.

But if you exclude the endpoints (insisting that the sides of a rectangle must have positive length or else the “rectangle” isn’t a true rectangle), then the answer is, there IS no rectangle with perimeter 4 inches that has smallest area!  Any rectangle with perimeter 4 inches will have positive area, but the area can be as close to zero as you like.

Problem: Which rectangle with area 1 has smallest perimeter?

Goal: Minimize P = 2x + 2y subject to xy = 1

Write y in terms of x: 

..?..

..?..

y = 1/x
P(x,y) = P(x) = 2x + 2/x (for x > 0)
Critical points: P( = 2 – 2/x2
which is undefined at x = 0 (which we’ve excluded from the domain) and vanishes at …

..?..

..?..

x2 = 1 ( x = 1 (ignore extraneous root –1) ( y = 1/1 = 1 

What kind of critical point?

P(( = 4/x3 = 4 > 0 ( local minimum (the only one)
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So the rectangle of area 1 with smallest perimeter is a square.

Here’s a geometrical way to see the link between the problem “Maximize A(x,y) = xy subject to 2x+2y = p” and “Minimize P(x,y) = 2x+2y subject to xy = a”.  The lines below are the loci of 2x+2y = p with p = 2, 4, and 6, and the curves are the loci of xy = a with a = 1/4, 1, and 9/4:
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Maximizing xy with 2x+2y fixed is asking “Among all the given curves, what’s the highest one that crosses a particular line?”, and the answer is, it’s the one that’s tangent to the line.

Minimizing 2x+2y with xy fixed is asking “Among all the given lines, what’s the lowest one that crosses a particular curve?”, and the answer is, it’s the one that’s tangent to the curve.

Problem: Three sides of a rectangle sum to 24 feet.  How big can the area be?  (Cf. Example 1 on page 232: a farmer putting fencing in a field along a river.)

We can solve this in the straightforward way by setting y = 24 – 2x and setting 0 = (d/dx) x(24 – 2x) = (d/dx) 24x – 2x2 = 24 – 4x ( x = 6, y = 12.

There’s a more geometrical way to understand this, via a relationship between the question “What rectangle R, three of whose sides sum to 24 feet, has greatest area?” and the question “What rectangle R(, all of whose sides sum to 48 feet, has greatest area?”  

Every rectangle R( whose sides sum to 48 feet can be cut into two equal sub-rectangles R, each of which has three sides summing to 24 feet.  

Conversely, given any rectangle R that has three sides summing to 24 feet, we can take two copies of the rectangle and join them along a common side (after flipping one of them around), obtaining a rectangle R( whose sides sum to 48 feet.  [Draw picture.]

If Alice is making rectangles whose four sides add up to 48 feet, and Bob is making rectangles three of whose sides add up to 24 feet, and they’re both trying to maximize areas, they can help each other out: every Alice-rectangle yields a Bob-rectangle whose area is half as big, and every Bob rectangle yields an Alice-rectangle whose area is twice as big.

Problem: If 1200 cm2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Let the length and width of the box be x, and the height be y.

Maximize V = x2y subject to x2 + 4xy = 1200.

Our method is to solve x2 + 4xy = 1200 for y in terms of x, use this to express V in terms of x, and use differentiation with respect to y to find the critical points.
(Note: You could also solve x2 + 4xy = 1200 for x in terms of y, express V in terms of y, and use differentiation with respect to y, but then the very first step involves solving a quadratic, so the solution will be really messy!)

Solve x2 + 4xy = 1200 for y in terms of x:

y = (1200 – x2)/4x = 300/x – x/4.

V = x2 (300/x – x/4) = 300x – x3/4.
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0 = dV/dx = 300 – (3/4)x2.

x = 20, y = 10.

The optimal solution has x = 2y.

Does this remind you of a problem we looked at yesterday?
..?..

..?..

This is similar to the rectangles example we just looked at.

By placing two of these open-top boxes together (the one on the bottom right-side up and the one on top upside-down, so that the open parts meet), we see that this problem is equivalent to the problem of finding the largest closed box with a square base, using 2400 cm2 of material.  By symmetry, we expect the answer to this new problem to be a cube (and it is), so we expect the answer to our original problem to be a box that is half as high as it is wide.
