[Collect summary of section 4.6, HW, time-sheets; hand out time sheets.]
The last day of class is 12/11, but the exam will still be 12/9.

Section 4.5: Optimization problems (concluded)
[Split class into two groups]
Problem 1: If 2400 cm2 of material is available to make a box with a square base, find the largest possible volume of the box.

Problem 2: If 1200 cm2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Solution to problem 1:

Let the length and width of the box be x, and the height be y.

Maximize V = x2y subject to 2x2 + 4xy = 2400.

Our method is to solve 2x2 + 4xy = 2400 for y in terms of x, use this to express V in terms of x, and use differentiation with respect to y to find the critical points.
(Note: You could also solve 2x2 + 4xy = 2400 for x in terms of y, express V in terms of y, and use differentiation with respect to y, but then the very first step involves solving a quadratic, so the solution will be really messy!)

Solve 2x2 + 4xy = 2400 for y in terms of x:

y = (2400 – 2x2)/4x = 600/x – x/2.

V = x2 (600/x – x/2) = 600x – x3/2.

0 = dV/dx = 600 – (3/2)x2.

x = 20, y = 20.

The optimal solution has x = y.  Seems reasonable that cubical boxes are “better” at enclosing volume than tall skinny boxes.

Solution to problem 2:
Let the length and width of the box be x, and the height be y.

Maximize V = x2y subject to x2 + 4xy = 1200.

Our method is to solve x2 + 4xy = 1200 for y in terms of x, use this to express V in terms of x, and use differentiation with respect to y to find the critical points.
(Note: You could also solve x2 + 4xy = 1200 for x in terms of y, express V in terms of y, and use differentiation with respect to y, but then the very first step involves solving a quadratic, so the solution will be really messy!)

Solve x2 + 4xy = 1200 for y in terms of x:

y = (1200 – x2)/4x = 300/x – x/4.

V = x2 (300/x – x/4) = 300x – x3/4.
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0 = dV/dx = 300 – (3/4)x2.

x = 20, y = 10.

The optimal solution has x = 2y.

Is there a relationship between these two problems?

..?..

..?..

Does this remind you of a problem we looked at yesterday?
..?..

..?..

This is similar to the rectangles example we just looked at.

By placing two of these open-top boxes together (the one on the bottom right-side up and the one on top upside-down, so that the open parts meet), we see that this problem is equivalent to the problem of finding the largest closed box with a square base, using 2400 cm2 of material.  By symmetry, we expect the answer to this new problem to be a cube (and it is), so we expect the answer to our original problem to be a box that is half as high as it is wide.

In cases where there are two variables satisfying a constraint, we don’t need to solve for one of them in terms of the other; we can find critical points with implicit differentiation.

Example 5: Find the area of the largest rectangle that can be inscribed in a semicircle of radius r.

Maximize A = 2xy subject to x2 + y2 = r2 with x,y ( 0.

Use implicit differentiation:

A( = 2y + 2xy(


2x + 2yy( = 0 ( y( = –x/y





(undefined when y = 0)

So A( = 2y + 2x(–x/y) = 2y – 2x2/y
Critical points:

A( undefined ( y( undefined ( x=r, y=0 (an endpoint)

A( = 0 ( 0 = 2y + 2x(–x/y) = 2y – 2x2/y (  2y = 2x2/y
( y2 = x2 ( y = x ( x = y = r/sqrt(2)

What kind of critical point is (x,y)= (r/sqrt(2), r/sqrt(2))?

The best approach to use is the first derivative test, writing A( = (2y2 – 2x2)/y:
For x < r/sqrt(2) we have y > r/sqrt(2), so y > x and A( > 0;

for x > r/sqrt(2) we have y < r/sqrt(2), so y < x and A( < 0.

Hence (r/sqrt(2), r/sqrt(2)) is a local maximum.
We could also have used the closed interval method from section 4.1 to find global maxima and minima.

Or we can use the second derivative test (read these details later if you’re curious):

A(( = 2y( + 2y( + 2xy((
2 + 2y(2 + 2yy(( = 0






( y(( = (–1–y(2)/y





( y(( = (–1–x2/y2)/y





( y(( = – 1/y – x2/y3
A(( = 4y( + 2xy(( = 4(–x/y) + 2x(– 1/y – x2/y3)


= – 4x/y – 2x/y – 2x3/y3 < 0 ( local maximum

In any case, the maximum area is 2xy = 2(r/sqrt(2))(r/sqrt(2)) = r2, achieved by a rectangle with height r/sqrt(2) and width 2r/sqrt(2).
Here’s a plot of the function A as a function of x in the case r = 1:
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Can we explain the two-to-one ratio of the optimal solution in terms of symmetries, the way we’ve done with earlier problems?
..?..

..?..

The area of a rectangle inscribed in a semicircle is half of the area of the corresponding rectangle inscribed in a full circle, and since “by symmetry” the biggest rectangle inscribed in a circle is a square, the solution to today’s last problem 5 should be a half-square, with sides 2x and y satisfying (2x) = 2(y), i.e., x=y.

Note that the problems we discussed at the start of class (maximizing the volume of a closed-top or open-top box with specified surface area) can also be done by implicit differentiation (instead of solving for y in terms of x as we did).

[Hand out evaluation forms]
