[Collect summary of section 4.7; hand out time sheets.]
The final exam will take place on December 9 and December 11.

There will also be an extra exam on December 4: the Calculus Concepts Inventory.  It will boost your score for the course above and beyond your score as computed by the formula given on the course web-page.  Specifically, your numerical score for the course will go up by your score on the Calculus Concepts Inventory divided by 20 (for a total of up to 5 points).  It cannot hurt your grade for the course.  If you choose not to take the exam, your grade will be unaffected.

[Collect summaries of sections 4.6; hand out time sheets]  

Section 4.6: Newton’s Method

Main ideas?

..?..

..?..

Basic idea: Suppose we know there is some number x* satisfying f(x*) = 0 and we want to approximate it.  If some number x1 is a good approximation to x*, then it is often the case that the new number

x2 = x1 – f(x1) / f ((x1)

is an even better approximation than x1, and the number  


x3 = x2 – f(x2) / f ((x2)

is an even better approximation than x2, and so on; so we can derive ever-better approximations to x* by iteratively defining


xn+1 = xn – f(xn) / f ((xn).

[Display picture from page 243 of Stewart to motivate the equation.]

Silly example: Take f(x) = x2, so that f ((x) = 2x.  Then


xn+1 = xn – f(xn) / f ((xn)



= xn – (xn2) / (2xn)



= xn – xn / 2



= xn / 2.

So if we take x1 = 1, then x2 = 1/2, x3 = 1/4, x4 = 1/8, etc., with xn getting closer and closer to x* = 0, which is indeed a solution to f(x) = 0.

Better example: Take f(x) = x2 – 2, so that f ((x) = 2x.  Then


xn+1 = xn – f(xn) / f ((xn)



= xn – (xn2 – 2)/(2xn)



= xn – xn/2 + 1/xn


= xn/2 + 1/xn.

If we take x1 = 1, then x2 = 3/2, x3 = 17/12, x4 = 577/408, etc.  x5 to ten decimal places is 

1.414213562… 

Compare this with sqrt(2), which is 

1.41421356237309504880...

So the numbers x1, x2, x3, ... get closer and closer to x* = sqrt(2).
What if we chose x1 = 2?  Does the iteration 

xn+1 = xn/2 + 1/xn
bring us closer and closer to sqrt(2)?

..?..

..?..

Yes.  We get into the same pattern as before!  Only the first term is different.

What if we chose x1 = –1?

..?..

..?..

The numbers x1, x2, x3, ... get closer and closer to –sqrt(2), which is the other root of x2 – 2 = 0.

Claim: The sequence x1, x2, x3, … obtained from Newton’s method (with f(x) = x2 – 2) converges to +sqrt(2) if x1 > 0 and converges to –sqrt(2) if x1 < 0.  (If x1 = 0, then x2 is undefined, and the game is over.)

This is Newton’s method for estimating the roots of an equation.

The road to wisdom?  Well, it’s plain

And simple to express:

Err and err and err again,

But less and less and less.


--- Piet Hein

Does Newton’s method always work?

..?..

..?..

No.  E.g., take f(x) = x1/3.

f ((x) = (1/3) x–2/3.

xn+1 = xn – f(xn) / f ((xn) 

= xn – [xn1/3] / [(1/3) xn–2/3]

= xn – 3 xn
= –2 xn.

So if we take x1 = 1, we get x2 = –2, x3 = 4, x4 = –8, etc., which are getting farther and farther from the root of f(x) = 0, namely x* = 0.

On the other hand, if we take f(x) = x1/3 – 1, then our guesses xn converge to x* = 1 as long as our initial guess x1 was close enough to 1, but not if x1 was too far from 1.  (Check it out on your calculator: If x1 is .1, or 4.5, or anything in between, then xn converges to 1, but if x1 is 0, then xn converges to 0, while if x1 is 5, xn diverges.)  

This is typical behavior for Newton’s method.
Sometimes it works, and sometimes it doesn’t; we’ve seen examples of both cases.

Another example where Newton’s method does work: 

f(x) = x2 – x – 1.  

x* = 

..?..

..?..

the golden ratio!

Then x1 = 1 gives x2 = 2, x3 = 5/3, x4 = 34/21, etc.

What sorts of numbers are these?

..?..

..?..

Fibonacci numbers!  1, 2, 3, 5, 8, 13, 21, 34, …

It can be proved that Newton’s method, applied to the golden ratio, gives approximations in which numerator and denominator are consecutive Fibonacci numbers.

For some applications, Newton’s method works if the initial x1 is chosen close to the desired value x* but fails if it’s too far away.  So it’s often smart to use some other method (such as trial and error, or bisection-search) to find a good x1 and then use Newton’s method to find x2, x3, etc.

Let’s use Newton’s method (in combination with a bunch of other tricks we’ve learned) to approximate the minimum value of the function x2 – sin x.

Why does this function have a minimum value?

..?..

..?..

When x is far away from zero, the x2 term dominates, because sin x is forced to stay close to 0 while x2 goes to infinity.  So if we’re looking for a minimum value, we can restrict ourselves to some finite interval, say x in [–2,2].  And THEN we can apply the Extreme Value Theorem to conclude that there is a minimum value in that interval.  

In more detail:

Applying the Extreme Value Theorem to the restriction of the function f(x) = x2 – sin x  to the interval I = [–2,2], we see that f(x) must have a global minimum on I.

Let c be a global minimum of f(x) on I, so that f(x) ( f(c) for all x in I.  In particular, f(c) ( f(0) = 0.

Note that for all x outside [–2,2], f(x) ( 4 – 1 ( 0 ( f(c).

So c is a global minimum of f(x) on R.

Here’s a Mathematica plot of x2 – sin x for x in [–2,2].
[image: image1.emf]









To minimize x2 – sin x, we need to find critical points, that is, points where 0 = (d/dx) (x2 – sin x) = 2x – cos x.

Later, we’ll apply Newton’s method to find an x* such that 2x* – cos x* = 0.

But first, let’s ask:

How many such points are there? 

..?..

..?..

Could there be no such points?

..?..

..?..
There must be at least one such point, because of the Intermediate Value Theorem (the function 2x – cos x is negative at x = 0 and positive at x = 10).

Could there be more than one such point?
..?..

..?..

There is exactly one such point, because g(x) = 2x – cos x is an invertible function.

(Why?

..?..

..?..

The derivative of g(x) is 2 + sin x, which is always positive; so g(x) is an increasing function of x.) 

We’ll use Newton’s method to find the unique real number x* with 2x* – cos x* = 0.
Trial and error gives x* to be about 1/2, so take x1 = 0.5.

With g(x) = 2x – cos x, we have g((x) = 2 + sin x.

xn+1 = xn – (2xn – cos xn) / (2 + sin xn).

With x1 = 0.5 , we get 

x2 ≈ 0.450626693077243046568,

x3 ≈ 0.450183647577774742501
,

x4 ≈ 0.45018361129487381641,

x5 ≈ 0.45018361129487357304,

x6 ≈ 0.45018361129487357304,

...

So after just a few iterations, the process stabilizes,

and we’ve found x* to twenty significant figures.

Hence the minimum value taken on by x2 – sin x  is about (x5)2 – sin x5 ≈ –0.232465575.

In general, when Newton’s method works, the error at the n+1st stage is approximately equal to the square of the error at the nth stage; hence each iteration gives you about twice as many correct digits as the iteration before:

x1 = 0.5 , we get 

x2 = 0.450626693077243046568,

x3 = 0.450183647577774742501,

x4 = 0.45018361129487381641,

etc.
