
Math 192r, Problem Set #17 — Solutions

1. Let P (n) and Q(n) denote the numerator and denominator obtained
when the continued fraction

x1 + (y1/(x2 + (y2/(x3 + (y3/ · · ·+ (yn−2/(xn−1 + (yn−1/xn))) · · ·)))))

is expressed as an ordinary fraction. Thus P (n) and Q(n) are polyno-
mials in the variables x1, ..., xn and y1, ..., yn−1.

(a) By examining small cases, give a conjectural bijection between the
terms of the polynomial P (n) and domino tilings of the 2-by-n
rectangle, and a similar bijection between the terms of the polyno-
mial Q(n) and domino tilings of the 2-by-(n−1) rectangle, as well
as a conjecture that gives all the coefficients.

We readily compute:
P (1)

Q(1)
=
x1

1

P (2)

Q(2)
=
x1x2 + y1

x2

P (3)

Q(3)
=
x1x2x3 + y1x3 + x1y2

y2 + x2x3

To describe P (n) in general, take a 2-by-n rectangle with its
columns indexed 1 through n. A tiling of such a rectangle by
dominos consists of vertical dominos and 2-by-2 blocks of hori-
zontal dominos; assign weight xk to a vertical domino occupying
the kth column and weight yk to a block of horizontal dominos oc-
cupying the kth and k+1st columns, and give each tiling a weight
equal to the product of the weights of its vertical dominos and of
its 2-by-2 blocks of horizontal dominos. Then one may conjecture
that P (n) is the sum of the weights of all the domino tilings of the
2-by-n rectangle. Likewise for Q(n), except that the rectangle is
a 2-by-(n− 1) rectangle with columns indexed from 2 through n.

(b) Prove your conjectures from part (a) by induction on n.
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The base case is trivial. To prove the general case, let P+(n − 1) and
Q+(n− 1) denote P (n− 1) and Q(n− 1) with all subscripts increased
by 1. Then we have P (n)/Q(n) = x1 +(y1/(P

+(n−1)/(Q+(n−1)))) =
(x1P

+(n− 1) + y1Q
+(n− 1))/P (n− 1) so that P (n) = x1P

+(n− 1) +
y1Q

+(n − 1) and Q(n) = P+(n − 1). If we assume for purposes of
induction that P+(n − 1) is the weight-enumerator for domino tilings
of a rectangle of height 2 with rows indexed by 2 through n and that
Q+(n− 1) is the weight-enumerator for domino tilings of a rectangle of
height 2 with rows indexed by 3 through n, it follows that x1P

+(n−1)+
y1Q

+(n − 1) = P (n) is the weight-enumerator for domino tilings of a
rectangle of height 2 with rows indexed by 1 through n. The induction
is even easier for Q(n), since it just involves reindexing.

(To be really fastidious, we would want to include in our proof a veri-
fication that the polynomials P (n) = x1P

+(n− 1) + y1Q
+(n− 1) and

Q(n) = P+(n − 1) have no common factor. This can be shown easily
by induction. Specifically, the fact that P (n− 1) and Q(n− 1) have no
common factor implies that P+(n−1) and Q+(n−1) have no common
factor, which implies that x1P

+(n − 1) + y1Q
+(n − 1) and P+(n − 1)

have no common factor.)

2. Let R(n) denote the determinant of the n-by-n matrix M whose i, jth
entry is equal to 

xi if j = i,
yi if j = i+ 1,
zi−1 if j = i− 1,
0 otherwise.

(a) By examining small cases, give a conjectural bijection between the
terms of the polynomial R(n) and domino tilings of the 2-by-n
rectangle, and a conjecture for the coefficients.

We readily compute:
R(1) = x1

R(2) = x1x2 − y1z1

R(3) = x1x2x3 − y1z1x3 − x1y2z2

R(4) = x1x2x3x4 − y1z1x3x4 − x1y2z2x4 − x1x2y3z3 + y1z1y3z3

Decree that a vertical domino occupying column k has weight
xk, a horizontal domino in the first row occupying rows k and
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k + 1 has weight yk, and a horizontal domino in the second row
occupying rows k and k + 1 has weight zk. Let the weight of a
tiling be the product of the weights of its tiles, together with a
factor of (−1)r where r is the number of 2-by-2 blocks of horizontal
dominos. Then one may conjecture that R(n) equals the sums of
the weights of all the domino-tilings of a 2-by-n rectangle.

(b) Prove your conjectures from part (a) by induction on n.

We have R(n) =
∑
π

∏
imi,π(i) where the sum is over all permutations of

1, ..., n. The only permutations π that make a non-zero contribution to
det(M) are those for which mi,π(i) 6= 0 for all i = 1, ..., n. In particular,
we must have π(n) = n or n − 1. If π(n) = n − 1, then we must have
π(n − 1) = n (since there must exist i with π(i) = n, and i = n and
i = n − 1 were the only two possibilities from the start). If we sum∏
imi,π(i) over all π with π(n) = n, we get xn times the determinant

R(n − 1), while if we sum
∏
imi,π(i) over all π with π(n) = n − 1 and

π(n − 1) = n, we get minus yn−1zn−1 times the determinant R(n −
2), with the minus sign coming from the transposition that switches
n − 1 and n. (More formally: in the first case we replace π by a
permutation π′ on the set {1, ..., n − 1} by deleting the 1-cycle (n),
and in the second case we replace π by a permutation π” on the set
{1, ..., n − 2} by deleting the 2-cycle (n − 1 n). We need merely note
that sign(π′) = sign(π) while sign(π”) = −sign(π).) Hence we have
R(n) = xnR(n − 1) − yn−1zn−1R(n − 2). But it is easy to see that
the sum of the weights of domino tilings satisfies the same recurrence
relation, so the claim is proved (once we check the initial conditions,
which is easy).

3. Consider a triangular array in which the top row is of length n, the next
row is of length n − 1, etc., with each row (other than the last) being
centered above the row beneath. Whenever such an array contains four
entries arranged like

w
x y

z

we’ll say that these entries satisfy the diamond condition if wz−xy = 1.
If the diamond condition is satisfied everywhere, we’ll say that the array
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is a diamond pattern. Thus, for instance, the array

a b c d
e f g

h i
j

with a, b, c, d, e, f, g non-zero is a diamond pattern iff h = (ef + 1)/b,
i = (fg + 1)/c, and j = (hi+ 1)/f .

Note that if the top two rows of a diamond pattern contain no zeroes,
there is a unique way to extend down. This is also true if the top two
rows consist of distinct formal indeterminates. Let D(x1, x3, . . . , x2n+1;
y2, y4, . . . , y2n) be the bottom entry of a diamond pattern whose first row
is x1, x3, . . . , x2n+1 and whose second row is y2, y4, . . . , y2n. By exam-
ining small cases, you will find that D(x1, x3, . . . , x2n+1; y2, y4, . . . , y2n)
can always be expressed as a multivariate Laurent polynomial. Give a
conjectural bijection between the terms of this Laurent polynomial and
domino tilings of the 2-by-(2n− 2) rectangle (for n ≥ 1). Include also
a conjecture governing the coefficients.

We readily compute:
D(x1, x3; y2) = y2

D(x1, x3, x5; y2, y4) = y2x
−1
3 y4 + x−1

3

D(x1, . . . , y6) = y2x
−1
3 y4x

−1
5 y6 +y2x

−1
3 x−1

5 +x−1
3 x−1

5 y6 +x−1
3 y−1

4 x−1
5 +y−1

4

In a 2-by-(2n − 2) rectangle, number the 2n − 1 lattice-points on the
horizontal mid-line 2 through 2n. Given any tiling T of the rectangle,
let a(i) (2 ≤ i ≤ 2n) be the number of dominos in T lying wholly
within the 2-by-2 square centered at the ith point on the mid-line, so
that 0 ≤ a(i) ≤ 2, and let b(i) = 1−a(i), so that −1 ≤ b(i) ≤ 1. Define
the weight of T to be ∏

i odd
x
b(i)
i

 ∏
i even

y
b(i)
i

 .
Then one may conjecture (and as we’ll see it is indeed the case) that
D(x1, x3, . . . , x2n+1; y2, y4, . . . , y2n) is equal to the sum of the weights of
all the tilings T of the 2-by-(2n − 2) rectangle. Note that this would
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imply in particular that all coefficients are 1, which is not obvious a
priori. In fact, it is not obvious that the rational functions D(. . .) can
be expressed as Laurent polynomials. And even if one knows that these
functions are Laurent polynomials, it is not obvious a priori that the
coefficients are positive. (If you are tempted to think that a quotient
of two polynomials with positive coefficients must have positive coeffi-
cients, consider that (x3 + y3)/(x+ y) = x2 − xy + y2.)

4. Repeat the problem, but with the diamond condition ad − bc = 1 re-
placed by the “frieze condition” ad− bc = −1. Let F (x1, x3, . . . , x2n+1;
y2, y4, . . . , y2n) be the bottom entry of a frieze pattern whose first row
is x1, x3, . . . , x2n+1 and whose second row is y2, y4, . . . , y2n. By exam-
ining small cases, you will find that F (x1, x3, . . . , x2n+1; y2, y4, . . . , y2n)
can always be expressed as a multivariate Laurent polynomial. Give a
conjectural bijection between the terms of this Laurent polynomial and
domino tilings of the 2-by-(2n− 2) rectangle (for n ≥ 1). Include also
a conjecture governing the coefficients.

We readily compute:
F (x1, x3; y2) = y2

F (x1, x3, x5; y2, y4) = y2x
−1
3 y4 − x−1

3

F (x1, . . . , y6) = y2x
−1
3 y4x

−1
5 y6−y2x

−1
3 x−1

5 −x−1
3 x−1

5 y6 +x−1
3 y−1

4 x−1
5 −y−1

4

So one may conjecture that we have the same Laurent monomials as
before, only with non-trivial signs. One may also conjecture that the
sign is plus or minus according to whether the number of vertical domi-
nos is twice an even number or twice an odd number. We’ll see that
both conjectures are true.

5


