
Math 192r, Problem Set #6: Solutions

1. For each even integer n ≥ 2, we can represent each domino tiling of a
3-by-n rectangle by a codeword (a1, a2, . . . , an), where ak is the number
of vertical dominos in the kth column (always either 0 or 1). Note that
two different tilings can have the same codeword; e.g., for n = 2 there
are three tilings but only two codewords (namely (0, 0) and (1, 1)). For-
mulate a conjecture for the number of codewords that occur for general
n.

Here is some Maple code that does quite a lot:

with(linalg):

m :=proc(k) matrix(3,3,

[1+2*x(k),x(k),x(k),y(k),1,0,y(k),0,1]); end;

count := proc(n) nops(expand(multiply(

seq(m(i),i=1..n))[1,1])); end;

The first line tells Maple to use the linear algebra package linalg. The
second line tells Maple to define m(n) as the 3-by-3 matrix 1 + 2x(k) x(k) x(k)

y(k) 1 0
y(k) 0 1

 .
The third line tells Maple that when it receives the command count(n),
it should take the product of n such 3-by-3 matrices, look at the upper
left entry in the product, expand it out, and count the number of
operands (that is, count the number of terms in the expansion).

This calls out for some explanation. Suppose we assign weight x(k)
(resp. y(k)) to either of the two vertical dominos occurring in the 2k−
1st (resp. 2kth) column of a 3-by-n rectangle, and suppose we assign
to each tiling of this rectangle a weight equal to the products of the
weights of the constituent vertical tiles. Then it is clear that the weight
of a tiling determines its codeword, and vice versa, with the presence or
absence of the weight x(k) or y(k) indicating the occurrence of a 1 or a
0 at the corresponding location in the codeword. So we can count the



distinct codewords by counting the number of terms in the polynomial
that is obtained by summing the weights of all the tilings.

We can do this using a 3-by-3 transfer matrix to handle three mutually
recursive sequences simultaneously: the first counts domino tilings of
a 3-by-2n rectangle, the second counts domino tilings of a 3-by-2n+ 1
rectangle with a bite taken out of the upper right corner, and the third
counts domino tilings of a 3-by-2n+ 1 rectangle with a bite taken out
of the lower right corner, (There is some redundancy here between
the second and third sequence, but it’s simpler conceptually, if not
computationally, to keep it around.)

Another approach is to generate all the tilings, determine their code-
words, and strip out redundancies, using the fact that when Maple
takes a union of two sets, it takes care of removing duplicates for you
(provided you’ve represented objects in such a way that Maple’s notion
of equality coincides with yours).

Under either approach, one finds that the number of codes of domino
tilings of a 3-by-2n rectangle appears to equal the number of domino
tilings of a 2-by-2n rectangle. It should also be noted that all the
polynomials obtained from the Maple code given above have coefficients
that are powers of 2. That is, for each codeword, the number of tilings
of the 3-by-2n rectangle that have that particular codeword always
seems to be a power of 2.

2. Let an be the number of domino tilings of a 4-by-n rectangle, with n ≥ 0
(we put a0 = 1 by convention).

(a) Prove that the sequence a0, a1, . . . satisfies a linear recurrence re-
lation of order 16 or less.

For each vertical line through the tiling that divides one column of
height 4 from the next, there are 24 = 16 different ways in which
one might see 0 to 4 horizontal dominos being pierced by the line.
If we give each of these 16 patterns a symbol, then every domino
tiling of a 4-by-n rectangle is represented by a string of n + 1
symbols from an alphabet of size 16, beginning and ending with
the symbol that means “no horizontal dominos pierced by this
line” (corresponding to the left end and right end of the rectangle);



call this the first symbol. Conversely, such a codeword corresponds
to exactly one tiling if certain forbidden adjancies do not occur,
and otherwise corresponds to no tilings at all. Thus the number of
(domino-)tilings of the 4-by-n rectangle is equal to the upper-left
entry of the nth power of the 16-by-16 matrix whose i, jth entry
tells whether the ith symbol can occur next to the jth symbol.
By the Cayley-Hamilton theorem, the sequence consisting of these
entries must satisfy the 16th-order linear recurrence relation given
by the characteristic polynomial of the matrix.

(b) Prove that the sequence a0, a1, . . . satisfies a linear recurrence re-
lation of order 8 or less.

To prove this claim, it’s enough to show that half of the 16 sym-
bols cannot occur in such a codeword (so that the 16-by-16 matrix
can be replaced by an 8-by-8 matrix). To see this, note that half
of the symbols indicate the presence of an odd number of hori-
zontal dominos being pierced by a particular vertical line. That
is, if you divide the rectangle in half along the vertical line and
remove the horizontal dominos that the line pierces, one is left
with two sub-regions, each with odd area. But then these two
sub-regions cannot be tiled by dominos (since a domino has even
area). Hence only 8 of the 16 symbols can occur in codewords of
the form (1, . . . , 1), and the claim is proved.

(c) Prove that the sequence a0, a1, . . . satisfies a linear recurrence re-
lation of order 6 or less.

Now we show that only 6 of the original 16 symbols can actu-
ally participate in a codeword of the form (1, . . . , 1). Color the
constituent squares of the rectangle black and white. If we have
a tiling of the rectangle and we cut it along a vertical line (dis-
carding the bisected pieces), the two remaining regions must be
tilable by dominos; so each must contain as many black squares as
it contains white squares. On the other hand, suppose we bisect
the rectangle along the same line and don’t discard the bisected
pieces; then (since each column has an even number of squares)
it’s clear that each side must contain as many black squares as
white. It follows that, among the bisected dominos, there must
be as many with a black square on the left and a white square on



the right as there are with a white square on the left and a black
square on the right. This leaves only six possibilities: no bisected
dominos; bisected dominos in rows 1 and 2; bisected dominos in
rows 1 and 4; bisected dominos in rows 3 and 2; bisected dominos
in rows 3 and 4; and bisected dominos in all four rows.


