[Enable multiple shares!] [Get 75% of students to turn on cameras]

The final exam will be Thursday, December 16, 6:30-9:30 pm in Olney 218.

If you have exam conflicts please let me know right away!

The format will be different from the midterm.

I'll be posting a practice exam by the weekend. Try the practice exam before the following Thursday. Keep in mind that the actual exam may be harder and/or formatted differently.

Section 8.3: Recurrence relations

• Solve recurrence relations using Algorithm 8.3.12.

Model problem: Solve the recurrence relation

S(k) = 3 S(k-1) - 2 S(k-2)

with initial conditions S(0) = 0, S(1) = 1.

1. Find and solve the characteristic equation, and write down the general form of the solution.

Rewrite the recurrence in the form

S(k) - 3 S(k-1) + 2 S(k-2) = 0

The characteristic polynomial

 $a^2 - 3 a + 2$

factors as (a-1)(a-2), so the characteristic equation

 $a^2 - 3a + 2 = 0$

has (simple) roots a = 1 and a = 2.

Since the roots are 1 and 2 (each with multiplicity 1), the general solution is of the form $S(k) = b_1 1^k + b_2 2^k$.

2. To find b_1 and b_2 , plug into the initial conditions.

Plugging k = 0 and k = 1 into $S(k) = b_1 \ 1^k + b_2 \ 2^k$ we get $S(0) = b_1 \ 1^0 + b_2 \ 2^0 = b_1 + b_2$ $S(1) = b_1 \ 1^1 + b_2 \ 2^1 = b_1 + 2b_2$ Since we also have initial conditions S(0) = 0 and S(1) = 1,

we must have

 $b_1 + b_2 = 0$

 $b_1 + 2b_2 = 1$

which we solve to give $b_1 = -1$, $b_2 = 1$.

So $S(k) = (-1) 1^k + (1) 2^k = 2^k - 1$.

3. Check your answer by computing the next term in two different ways.

Use the recurrence we were given, with k=2:

S(2) = 3 S(1) - 2 S(0) = 3 (1) - 2 (0) = 3

Use the formula we derived (correctly, we hope), with k=2:

 $S(2) = 2^2 - 1 = 4 - 1 = 3.$

 \odot

Group work (6 minutes):

Consider the following recurrence relation and initial conditions (Exercise 8.3.1):

S(k) - 10S(k-1) + 9S(k-2) = 0, S(0) = 3, S(1) = 11

Find and solve the characteristic equation, and write down the general form of the solution.

..?..

The characteristic equation is $a^2 - 10a + 9 = 0$, with roots a = 9 and a = 1, so there exists constants b_1 and b_2 with $S(k) = b_1 9^k + b_2 1^k = b_1 9^k + b_2$. Group work (6 minutes): Given the recurrence and initial conditions

S(k) - 10S(k-1) + 9S(k-2) = 0, S(0) = 3, S(1) = 11you showed that $S(k) = b_1 9^k + b_2$ for suitable constants b_1 and b_2 .

To find b_1 and b_2 , plug into the initial conditions.

$$3 = S(0) = b_1 9^1 + b_2 = b_1 + b_2$$

$$11 = S(1) = b_1 9^1 + b_2 = 9 b_1 + b_2.$$

Subtracting the first equation from the second, we get $8 = 8 b_1$, so $b_1 = 1$, and plugging that into the other equation we get $b_2 = 2$.

Hence the desired answer is $S(k) = 9^k + 2$.

Group work (6 minutes): Given the recurrence and initial conditions

S(k) - 10S(k - 1) + 9S(k - 2) = 0, S(0) = 3, S(1) = 11you showed that $S(k) = 9^k + 2$.

Check your answer by computing the next term in two different ways.

..?..

After you've gotten the answer $S(k) = 9^k + 2$, you can check it by computing S(2) in two different ways.

First way: Use the recurrence relation

 $S(k) = 10 \ S(k-1) - 9 \ S(k-2)$

We get S(2) = 10 S(1) - 9 S(0) = (10)(11) - (9)(3) = 83.

Second way: Use the formula

 $S(k)=9^k+2.$

We get $S(2) = 9^2 + 2 = 83$. \bigcirc

What if I'd given you S(k) - 4 S(k-1) + 4 S(k-2) = 0?

The characteristic equation is $a^2 - 4a + 4 = 0$, which factors as (a - 2) (a - 2) = 0, with a double root a = 2. Would the general solution be $S(k) = b_1 2^k + b_2 2^k$?

..?..

No; the general solution is $S(k) = b_1 2^k + b_2 k 2^k$, i.e. $S(k) = (b_1 + b_2 k) 2^k$ (a linear function of *k* times an exponential function of *k*).

(c) If there are n distinct characteristic roots, $a_1, a_2, \ldots a_n$, then the general solution of the recurrence relation is $S(k) = b_1 a_1^k + b_2 a_2^k + \cdots + b_n a_n^k$. If there are fewer than n characteristic roots, then at least one root is a multiple root. If a_j is a double root, then the $b_j a_j^k$ term is replaced with $(b_{j0} + b_{j1}k) a_j^k$. In general, if a_j is a root of multiplicity p, then the $b_j a_j^k$.

What if I'd given you $S(k) - 10 S(k-1) + 9 S(k-2) = 2^k$ with some specified values of S(0) and S(1)? The presence of 2^k (as opposed to 0) in the RHS makes this an inhomogeneous linear recurrence relation. The characteristic equation is

..?..

 $a^2 - 10a + 9 = 0$ (as in the first problem), with roots a = 9and a = 1.

Our solution is of the form $S(k) = S^{(h)}(k) + S^{(p)}(k)$ where $S^{(h)}(k)$ is of the form $b_1 9^k + b_2 1^k$ (a solution to the homogeneous recurrence S(k) - 10 S(k-1) + 9 S(k-2) = 0) and $S^{(p)}(k)$ is of the form $d 2^k$ (given to us by Table 8.3.17).

Table 8.3.17 Particular solutions for given right-hand sides

Right Hand Side, $f(k)$	Form of Particular Solution, $S^{(p)}(k)$
Constant, q	${\rm Constant},d$
Linear Function, $q_0 + q_1 k$	Linear Function, $d_0 + d_1 k$
m^{th} degree polynomial, $q_0 + q_1k + \cdots + q_mk^m$	m^{th} degree polynomial, $d_0 + d_1k + \cdots + d_mk^m$
exponential function, qa^k	exponential function, da^k

To solve for *d*, use the fact that $S^{(p)}(k)$ must be a solution to the original recurrence $S(k) - 10 S(k-1) + 9 S(k-2) = 2^k$. So

(*) $d 2^{k} - 10 d 2^{k-1} + 9 d 2^{k-2} = 2^{k}$.

Divide both sides by 2^k :

 $d - 10 \ d \ (1/2) + 9 \ d \ (1/4) = 1 \Rightarrow (-7/4) \ d = 1 \Rightarrow d = -4/7.$

OR: Use the fact that (*) must hold for all k and plug in some convenient value to solve for d.

 $k=2: d 2^2 - 10 d 2^1 + 9 d 2^0 = 2^2$ gives 4d - 20d + 9d = 4which also gives d = -4/7.

(NOTE: If your algebra gives you a value of *d* that depends on *k*, you've made a mistake; *d* is a constant!)

So our solution is of the form

 $S(k) = S^{(h)}(k) + S^{(p)}(k)$ = $b_1 9^k + b_2 1^k - (4/7) 2^k$. How do we find b_1 and b_2 ?

..?..

Plug into the initial conditions for S(0) and S(1).