Congruence mod n

Given a positive integer n, and two integers a and b, we say “a is congruent to b modulo n” and write “$a \equiv b \pmod{n}$” iff $a - b$ is a multiple of n (or equivalently iff n divides $a - b$). Example: $(11) - (-19)$ is a multiple of 10, so $11 \equiv -19 \pmod{10}$.

Congruence mod n (with n fixed) is an example of an equivalence relation:

- $a \equiv a \pmod{n}$ for all a (reflexive property);
- If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$ (symmetric property); and
- If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$ (transitive property).

Consequently, the relation congruence-mod-n gives a partition of the set of integers into blocks.

When $n = 2$, the two blocks are the set of even integers $\{\ldots, -4, -2, 0, 2, 4, \ldots\}$ and the set of odd integers $\{\ldots, -3, -1, 1, 3, \ldots\}$. Two integers are congruent mod 2 iff they’re either both even or both odd.

When $n = 10$, there are ten blocks. One of them is $\{\ldots, -20, -10, 0, 10, 20, \ldots\}$ (the set of multiples of ten); another is $\{\ldots, -19, -9, 1, 11, 21, \ldots\}$ (the set of numbers that are 1 more than a multiple of ten); etc. Each of the ten blocks can be described as an arithmetic progression with difference 10.

If n is a positive integer, there are n blocks (also called equivalence classes) under the relation congruence-mod-n, and each of them is an arithmetic progression with difference n. Two integers are equivalent mod n if they belong to the same block, that is, if they belong to the same arithmetic progression mod n, which happens precisely when the two numbers differ by a multiple of n.