
Lexicographic order

The computer-science-y way to list all the three-element subsets of S =
{a, b, c, d} is to use a divide-and-conquer strategy. There are two kinds of
three-element subsets of S, namely, those that contain a and those that don’t.
The former consist of a along with two other elements of S while the latter
consist of three elements of {b, c, d}. That is, the problem of listing all the
three-element subsets of {a, b, c, d} can be reduced to the problem of listing
all the two-element subsets of {b, c, d} and the problem of listing all three-
element subsets of {b, c, d}. More generally, the problem of listing all the
k-element subsets of {a1, a2, . . . , an} can be reduced to the problem of listing
all the (k − 1)-element subsets of {a2, . . . , an} and the problem of listing all
k-element subsets of {a2, . . . , an}. By applying this reduction recursively, we
can generate all the k-element subsets of an n-element set. This is called
lexicographic order. To see why this name is used, notice that in the
case of {a, b, c, d}, we get the list {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}; this
corresponds to the dictionary-ordering of the (nonsense) words abc, abd, acd,
bcd.

Here’s pseudocode to generate all the two-element subsets of {1, 2, . . . , 10}
in lexicographic order:

for i from 1 to 10 do

for j from i+1 to 10 do

print i, j

We can make it slightly more efficient if in the outer loop we let i go
from 1 to 9 (do you see why?). If we wanted more general pseudocode to
generate all the two-element subsets of {1, 2, . . . , n} in lexicographic order,
we’d replace 9 and 10 by n− 1 and n.

As a check on your understanding, can you write pseudocode to generate
all the three-element subsets of {1, 2, . . . , n} in lexicographic order? For fun,
implement it in code and run it with n = 5, to see if it correctly generates
the correct number of subsets (agreeing with what you get for problem E in
homework assignment #1).

1


