Multiplying matrices

The definition of matrix multiplication that we use turns out to be the right one for a lot of reasons.

One reason is that it lets us solve simultaneous linear equations in several unknowns with a procedure that looks a lot like the one-variable procedure. To solve $ax = b$, we multiply both sides by a^{-1} to get $x = a^{-1}b$ (also known as b/a).

To solve

$$
\begin{align*}
ax + by &= e \\
cx + dy &= f
\end{align*}
$$

we write it as

$$
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} =
\begin{pmatrix}
e \\
f
\end{pmatrix}
$$

or more compactly as $Ax = b$, where x is the vector

$$
\begin{pmatrix}
x \\
y
\end{pmatrix}
$$

and b is the vector

$$
\begin{pmatrix}
e \\
f
\end{pmatrix}
$$

and A is the matrix

$$
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}.
$$

The way we solve the linear system $Ax = b$ is by “left-multiplying” the LHS and the RHS by the inverse matrix A^{-1} (which we are assuming exists); then

$$
Ax = b
$$

implies

$$
A^{-1}Ax = A^{-1}b
$$

and the left hand side simplifies to Ix, which is just x, so we get

$$
x = A^{-1}b,
$$
analogous to the formula \(x = a^{-1}b \) we got in the single-variable case. (Note however that we do not write \(A^{-1} \) as \(1/A \) and we do not write \(A^{-1}b \) as \(b/A \).)

The determinant of
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
is \(ad - bc \), and it has the property that for any two 2-by-2 matrices \(A, B \),
\[
det(AB) = det(A) det(B).
\]
In fact, this formula is valid for \(n \)-by-\(n \) matrices, for all \(n \). In the case where \(A \) is invertible and we set \(B = A^{-1} \), we get
\[
det(AA^{-1}) = det(A) det(A^{-1}).
\]
The left hand side simplifies to \(det(I) \), which is 1. So
\[
1 = det(A) det(A^{-1}),
\]
which implies
\[
det(A^{-1}) = 1/ det(A).
\]
In particular, if \(A \) is invertible, its determinant must be non-zero. In fact:

Theorem: The square matrix \(A \) has an inverse if and only if \(det(A) \) is not equal to 0.

Theorem: If \(A \) and \(B \) are invertible square matrices of the same order, then
\[
(AB)(B^{-1}A^{-1}) = I = (B^{-1}A^{-1})(AB),
\]
implying that \(AB \) is invertible and \((AB)^{-1} = B^{-1}A^{-1} \).

Proof: Use associativity.

\[
(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I
\]

and

\[
(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I.
\]