
Isomorphism of groups

The historically first isomorphism between groups, and still an important
one, is the isomorphism between [R; +] and [R+;×], where R is the set of
real numbers and R+ is the set of positive real numbers. Napier’s insight,
embedded in the slide rule he invented, was that if you want to multiply two
positive numbers, you can add the two numbers’ logarithms together and
then exponentiate the sum. That is,

x× y = 10log x+log y

(where I use log to mean the base ten logarithm, also called the common
logarithm). We can rewrite this in terms of the quantities a = log x and
b = log y:

10a × 10b = 10a+b.

Note that the operation f that (for all a) sends a to 10a is a bijection between
R and R+. We can rewrite the previous formula as

f(a)× f(b) = f(a + b)

or, writing + as ∗1 and × as ∗2,

f(a) ∗2 f(b) = f(a ∗1 b).

More generally, we say that a map f from G1 to G2 (where [G1; ∗1] and
[G2; ∗2] are groups) is an isomorphism of groups if (a) f is a bijection and
(b) f(a ∗1 b) = f(a) ∗2 f(b) for all a, b in G1.

(This should remind you of the definition of an isomorphism of graphs:
we say that a map f from V1 to V2 (where (V1, E1) and (V2, E2) are graphs)
is an isomorphism of graphs if f is a bijection and

{v, w} ∈ E1 ⇔ {f(v), f(w)} ∈ E2

for all v, w in E1.)
Let’s look at other examples.
An isomorphism from [{0, 1}; +2] to [{+1,−1};×] is given by the map

f from {0, 1} to {+1,−1} satisfying f(0) = +1 and f(1) = −1, i.e., the
map f(a) = (−1)a. This is a bijection, and it’s easy to check property (b):
f(a ∗1 b) = f(a +2 b) = (−1)a+2b = (−1)a+b = (−1)a × (−1)b = f(a) ∗2 f(b).



The groups [{0, 1}; +2] and [{+1,−1};×] are isomorphic to each other
and also to [{F, T}; XOR]. In fact, all 2-element groups are isomorphic to
these groups. To see why, let e be the identity element of some 2-element
group [G; ∗], and let f be the other element. We have e ∗ e = e and e ∗ f = f
and f ∗ e = f , so we’re forced to have f ∗ f = e. (One way to see this is to
remember that f must have an inverse; since e isn’t an inverse of f , the only
other element of G, namely f , must be the inverse of f .) So the map that
sends e to 0 and f to 1 is an isomorphism from [G; ∗] to [Z2; +2].

An isomorphism from [{0, 1, 2, 3}; +4] to [{+1,+i,−1,−i};×] is given
by the map f satisfying f(a) = (i)a. You can check this by drawing the
addition table for Z4; then replacing 0, 1, 2, and 3 by +1, +i, −1, and
−i respectively; and lastly checking that this new table coincides with the
multiplication table for {+1,+i,−1,−i}. (For more insight into why this
works, show that (i)a+4b = (i)a × (i)b.)

If two algebraic structures are isomorphic, then every “intrinsic” prop-
erty of one (such as being associative or being commutative) automatically
carries over to the other. For example, suppose that [G1; ∗1] is commutative,
and suppose that [G2; ∗2] is isomorphic to [G1; ∗1]. To show that [G2; ∗2] is
commutative as well, we reason as follows: for all x, y in G2, there exist a, b
in G1 such that x = f(a) and y = f(b), and therefore

x ∗2 y = f(a) ∗2 f(b)

= f(a ∗1 b) (because f is an isomorphism)

= f(b ∗1 a) (because ∗1 is commutative)

= f(b) ∗2 f(a)(because f is an isomorphism)

= y ∗2 x,

proving that [G2; ∗2] is commutative as claimed.
Another property that is preserved by isomorphism is finiteness. If [G1, ∗1]

is isomorphic to [G2, ∗2], then either G1 and G2 are both finite (and of the
same cardinality) or else G1 and G2 are both infinite. That’s because the
isomorphism f is a bijection (property (a)).

If G1 and G2 are groups, and e1 is the identity element of G1 and e2
is the identity element of G1, then any isomorphism from G1 to G2 (if one
exists) must have the property that f(e1) = e2. That’s because the relation
e1 ∗1 e1 = e1 implies f(e1 ∗1 e1) = f(e1), and the left hand side of that
equation can be rewritten as f(e1) ∗2 f(e1) because f is an isomorphisim. So



f(e1) ∗2 f(e1) = f(e1); that is, if we write f(e1) as y, y satisfies y ∗2 y = y.
But this implies that y = e2. So f(e1) = e2.

Using a similar proof, one can show that the number of solutions to the
equation xn = e1 in G1 must be equal to the number of solutions to the
equation yn = e2 in G2. This is related to the claim made in class that the
order sequence of G1 and the order sequence of G2 must be the same if the
two groups are isomorphic.

To prove that two groups are isomorphic, we exhibit an isomorphism
between them. (Sometimes one has to explicitly prove that the function one
has exhibited is an isomorphism, but other times this step is routine and may
be omitted.) To prove that two groups G and G′ are NOT isomorphic, we
give some invariant that takes on different values for G and G′. One example
would be |G| (the order of G). Another would be the number of elements
of G satisfying x ∗ x = e (or x3 = e etc.). Another would be the number of
subgroups H of G such that H has order n. Yet another would be the order
sequence.

A variant of the idea of isomorphism is the idea of homomorphism. We
say that a map f from G1 to G2 (where [G1; ∗1] and [G2; ∗2] are groups) is a
homomorphism of groups if
(*) f(a ∗1 b) = f(a) ∗2 f(b) for all a, b in G1.
Compare this with the definition of isomorphism: we’ve dropped the condi-
tion that f is a bijection.

(For fans of math terminology, I’ll mention that in the case where the
groups G1 and G2 are the same group, an isomorphism is called an automor-
phism and a homomoprhism is called an endomorphism. But you don’t need
to know that.)

An example of a homomorphism is the function f from Z to Z2 that sends
every even integer to 0 and sends every odd integer to 1. You can check that
f(a + b) = a +2 b for all integers a, b. This means that if you want to know
the remainder when you divide a + b by 2, compute the remainder r that
you get when you divide a by 2 and the remainder s that you get when you
divide b by 2 and then compute r +2 s.

Note that if f is a homomorphism, then the formula f(a∗1b) = f(a)∗2f(b)
extends to bigger formulas like like f(a ∗1 b ∗1 c) = f(a) ∗2 f(b) ∗2 f(c).

As an application of this, go back to the homomorphism from Z to Z2

discussed two paragraphs ago. If you have n integers a1, a2, . . . , an, then
f(a1 + a2 + . . . + an) = a1 +2 a2 +2 . . . +2 an. Since each ai is 0 or 1, this
right hand sum is just a sum of k 1’s, where k is the number of odd terms in



the sum a1 +a2 + . . .+an. If you think about it for a minute, and maybe try
some examples, you’ll see that this tells us that the sum a1 + a2 + . . . + an
is even when k is even and odd when k is odd. This relates to a fact that
got mentioned in the lecture notes for chapter 9: in any simple graph, the
number of vertices of odd degree must be even because the sum of the degrees
(being equal to twice the number of edges) must be even.

The homomorphism from Z to Z2 isn’t an isolated example; for any
positive integer m there’s a homomorphism f from Z to Zm that sends each
n ∈ Z to the remainder when n is divided by m (keeping in mind that even
when n is negative the remainder is required to lie between 0 and m − 1).
When m is 10, f(n) is the last decimal digit of n (when n is positive); in
this case, property (*) says that last decimal digit of the sum of two numbers
equals what you get when you take just the last decimal digits of the two
numbers, add them, divide the sum by ten, and take the remainder.

I’ll conclude with two examples of homomorphisms related to Exercise
11.7.8(a) from the textbook. The operation abs(·) from [R∗,×] to [R+,×]
that sends x to |x| is a homomorphism because abs(x× y) = abs(x)× abs(y)
(that is, |xy| = |x||y|) for all nonzero x, y. Likewise, the operation sign(·)
from [R∗,×] to [{1,−1},×] that sends x to +1 if x is positive and −1 if
x is negative is a homomorphism because sign(xy) = sign(x)sign(y) for all
nonzero x, y.


