For Tuesday: Read section 8.1

Page 244: “r is a real number”.  We can let r be non-real too!

Take the recurrence h_n = –h_{n-2} with initial conditions h_0 = 1, h_1 = 0.  

Write g(x) = h_0 + h_1 x + h_2 x^2 + …  Then, summing the equation h_n x^n = –h_{n-2} x^n for n=2,3,4,…, we get g(x) – h_0 – h_1 x = –x^2 g(x), i.e., g(x) – 1 = –x^2 g(x), i.e., (1+x^2) g(x) = 1, i.e., g(x) = 1/(1+x^2).  Partial fractions: Factor (1+x^2) as (1+rx)(1–x) where r,s are the reciprocals of the roots of 1+x^2, which are … the reciprocals of i and –i, which are … –i and i.  With partial fractions, we get 1/(1+x^2) = A/(1–ix)+B/(1+ix) with solutions A=B=1/2, so g(x) = 1/(1–ix)+1/(1+ix), so h_n = the coefficient of x in (1/2)/(1–ix) plus the coefficient of x in (1/2)/(1–ix) = (1/2)(i)^n+(1/2)( –i)^n as before.

What about repeated roots? …We can use the formula in the middle of page 241 (formula (7.47)).  But it’s probably better to replace the lower index in the binomial coefficient by n–1 instead of k (so that it doesn’t vary from term to term in the sum).

How does partial fractions work when there are repeated roots? … If r is a double root, then constant/(x–r) and constant/(x–r)^2 both appear as terms.  Similarly for triple roots, etc.  (Baby case: r=0.  Then (ax^2+bx+c)/(x-0)^3 = (ax^2+bx+c)/x^3 

= a/x + b/x^2 + c/x^3 = a/(x-0)+b/(x-0)^2+c/(x-0)^3.)

SKIP IF TIME GETS SHORT:

Let h_n be a sequence satisfying a kth order homogeneous linear recurrence relation with constant coefficients.  Then the generating function g(x) can be written in the form p(x)/q(x) where p(x) and q(x) are polynomials, where deg q(x) = k and deg p(x) < k.  In fact, there is an important relationship between the linear recurrence satisfied by the sequence h_n and the polynomial q(x).  Specifically, if the recurrence is 


h_n – a_1 h_{n-1} – a_2 h_{n-2} – … 

– a_k h_{n-k} = 0

(equation (7.15)) then q(x) is

1 – a_1 x – a_2 x^2 – … – a_k x^k

whereas the characteristic polynomial r(x) is


x^k – a_1 x^(k-1) – a_2 x^(k-2) – ... – a_k.

Note that q(x) = x^k r(1/x), or equivalently, 

r(x) = x^k q(1/x).  Two such polynomials are called reciprocal to one another.

SKIP IF TIME GETS SHORT:

Example: The Fibonacci numbers satisfy f_n – f_{n-1} – f_{n-2} = 0, so the generating function g(x) = f_0 + f_1 x + f_2 x^2 + … can be written in the form p(x)/(1-x-x^2) where p(x) is of degree 1.  In this case, it’s x/(1-x-x^2).

Using partial fractions, we can write this as 

A/(1-rx)+B/(1-sx)

and thus write the nth Fibonacci number as Ar^n+Bs^n for suitable constants A,B,r,s.  You can re-derive Binet’s formula this way.

The characteristic equation for the Fibonacci recurrence is r(x) = x^2-x-1; the denominator for the generating function is 1-x-x^2.  The general formula linking the two is q(x) = x^k r(1/x).

Review: Pages 247-249.

Questions on section 7.5?

Section 7.6: Do the small cases (2, 5, 14).

State the recurrence and verify in small cases.

Walk them through the proof.

Define h_n = number of triangulations of a convex (n+1)-gon.  Put h_1 = 1 for later convenience.

Define g(x) = h_1 x + h_2 x^2 + h_3 x^3 + …

h_1 = 1, h_2 = 1, h_3 = 2, h_4 = 5, …

So g(x) = x + x^2 + 2x^3 + 5x^4 + …

h_n = h_1 h_{n-1} + h_2 h_{n-2} + … + h_{n-1} h_1

This equation is valid for all n>1.

Multiply this equation by x^n, and sum over all n>1.

We get g(x) – x = [g(x)]^2.

(Brualdi takes it from there.)

Note: If a sequence (like h_1, h_2, ...) has no zeroeth term defined, one often begins the g.f. with h_1 x.  (This is equivalent to taking h_0 to be 0 when it’s undefined.)

Questions on section 7.6?

Section 7.7: Exponential generating functions

Compare Theorem 7.7.1 with result from last time.

Example: S = {1 ( a , 2 ( b} .  Permutations are ( ), (a), (b), (a,b), (b,a), (b,b), (a,b,b), (b,a,b), (b,b,a).  (h_0, h_1, h_2, h_3) = (1, 2, 3, 3).  G.f. = f_a (x) f_b (x) = (1+x/1!)(1+x/1!+x^2/2!) = (1+x)(1+x+(1/2)x^2 = 

1+2x + (3/2) x^2 + (1/2) x^3 = 

1 + (2) x/1! + (3) x^2/2! + (3) x^/3!.

Special case of Theorem 7.7.1: k=2.

f_{n_1} (x) = 

1 + x + x^2 / 2 + x^3 / 6 + … + x^{n_1} / {n_1}!

f_{n_2} (x) = 

1 + x + x^2 / 2 + x^3 / 6 + … + x^{n_2} / {n_2}!.

With n_1 = 1 and n_2 = 2, we get

f_{n_1} = 1+x and

f_{n_2} = 1+x+x^2/2,

so f_{n_1} f_{n_2} = (1+x)(1+x+x^2/2)

=1+2x+(3/2)x^2+x^3/2, which checks.

