OFFICE HOURS:

After class today, 10:50-11:50 in Van Vleck 813 or from 2:00 to 3:00 at the Steep and Brew or by appointment 

READING

For today: chapter 8, section 2.

Section 8.2:

Difference tables

Every sequence of numbers has a difference table in which each row is equal to the entry above and to the right minus the entry above and to the left:

1        2        4        7       11       16       22  …

     1        2        3        4        5         6  …

          1        1        1         1        1  …

               0        0        0        0   …

                    0        0         0 

                         .

                             .

                                 . 

We call the top row row 0, the next row row 1, etc.

Elements in row k are called the kth iterated differences (or

just the kth differences) of the original sequence.

If h_n = p(n) for some polynomial p of degree ≤ k, then

every row after row k is filled with zeroes.  (Prove it.)

The converse is also true.

Moreover, we can read off a formula for p(n) by looking at

the first entries in rows 0 through k.  Specifically, if we

call these entries c_0 through c_k, then p(n) = 

c_0 (n choose 0) + c_1 (n choose 1) + ... + 

c_k (n choose k).  (This is formula (8.10), except that Brualdi uses p instead of k.)

Try it: k= ... 2, c_0 = ... 1, c_1 = ... 1, c_2 = ... 1, so h_n = p(n) = 1 (n choose 0) + 1 (n choose 1) + 1 (n choose 2) =

1 + n + n(n-1)/2 = (n^2+n+2)/2.

Here’s another example: h_n = (n+1)^2.

1        4        9       16       25      

     3        5        7        9

          2        2        2            (we can stop when we get

                                             a constant row if we want)

p(n) = 1 (n choose 0) + 3 (n choose 1) + 2 (n choose 2) =  1 + 3n + 2 n(n-1)/2 = 1 + 3n + (n^2-n) = 1+2n+n^2 = (n+1)^2.

Why does this work?  That is: If h_n = p(n) for some polynomial p(), why is it that the polynomial q(n) that we construct using formula (8.10) is the original polynomial p()?

Here’s the key to what’s going on, in the last example:

You should look at the preceeding difference table (call it T) as being 1 T_0 + 3 T_1 + 2 T_2, where T_0, T_1, and T_2 are the difference tables for (n choose 0), (n choose 1), and (n choose 2).

T_0:

1        1        1        1        1

     0        0        0        0

          0        0        0

T_1:

0        1        2        3        4

     1        1        1        1

          0        0        0

T_2:

0        0        1        3        6

     0        1        2        3

          1        1        1

Note that if you multiply a difference table by a constant (i.e., you multiply each entry by that constant), or add two difference tables (i.e., you add each entry of the first table to the corresponding entry of the second table), the result is always a valid difference table.  That means that if you take the difference table of the sequence whose nth term is q(n) = 1 (n choose 0) + 3 (n choose 1) + 2 (n choose 2),

you must get a difference table in which the leading entries

in rows 0, 1, and 2 are 1, 3, and 2 respectively.  So q(n) is a polynomial of degree 2 with the same difference table as p(n), so it must be the same exact polynomial.

Why does q(n) have the same difference table as p(n)? … For both p(n) and q(n), the “0th diagonal entries” (the first entries in each row) go 1, 3, 2, 0, 0, 0, …; and we can reconstruct all the entries in a difference table just from knowing the first entry in each row.

Explain how Brualdi expresses all this in terms of (, etc.

Mention the alignment problem (page 263 and elsewhere).

Let’s look some more at the case k=2.

p(n) is a polynomial of degree 2, which we ordinarily write as a_0 + a_1 n + a_2 n^2 but which Theorem 8.2.2 gives us in the form 

c_0 (n choose 0) + c_1 (n choose 1) + c_2 (n choose 2).

What’s going on in terms of linear algebra is that we’re using a different basis for the space of quadratic polynomials.  The space is 3-dimensional: the ordinary basis is 1, n, n^2, but Theorem 8.2.2 uses the alternative basis 1, n, n(n-1)/2.

Why use this new basis?  One thing it’s handy for is when you want to compute partial sums of a known sequence.

Problem: What is (_{n=0}^{10} (n+1)^2?

( 1 (n choose 0) + 3 (n choose 1) + 2 (n choose 2)) = 

( (n choose 0) + 3 ( (n choose 1) + 2 ( (n choose 2) = (10+1 choose 1) + 3 (10+1 choose 2) + 2 (10+1 choose 3) = 506 (recall formula (5.14) on page 136).

