For Thursday: read 8.3

Section 8.2: Stirling numbers
Fix a non-negative integer p.

One basis for the space of polynomials of degree ( p is the “monomial basis” {n^0, n^1, n^2, …, n^p}; another basis is {(n choose 0), (n choose 1), …, (n choose p)}; and another basis is the “falling factorial basis” {[n]_0,[n]_1, [n]_2, …, [n]_p}, where [n]_k = n(n-1)(n-2)…(n-k+1).  (Note that [n]_2 = 2 (n choose 2), [n]_3 = 6 (n choose 3), and more generally, [n]_k = k! (n choose k).)

Have we seen these numbers before? … [n]_k = P(n,k).

Signed Stirling numbers of the first kind, a(p,k) (not a standard notation!):

p \ k        0    1    2    3    4

   0          1    

   1          0    1    

   2          0   -1    1    

   3          0    2   -3    1

   4          0   -6   11  -6    1

These are the coefficients you get when you express the falling factorial basis in terms of the monomial basis; i.e., [n]_p = (_{0(k(p} a(p,k) n^k.  (See top of page 293.)

The blank entries in the table are equal to zero.

(Unsigned) Stirling numbers of the first kind, s(p,k).

p \ k        0    1    2    3    4

   0          1    

   1          0    1    

   2          0    1    1    

   3          0    2    3    1

   4          0    6   11   6    1

a(p,k) = (-1)^(p+k) s(p,k)

s(p,k) = … (-1)^(p+k) a(p,k)

[n]_p = (_{0(k(p} (-1)^(p+k) s(p,k) n^k

Stirling numbers of the second kind: S(p,k).

p \ k        0    1    2    3    4

   0          1    

   1          0    1    

   2          0    1    1   

   3          0    1    3    1    

   4          0    1    7    6    1

These are the coefficients you get when you express the monomial basis in terms of the falling factorial basis; i.e., n^p = (_{0(k(p} S(p,k) [n]_k.

Check:

p=2:  n^2 = [n]_1 + [n]_2 ?


[n]_1 + [n]_2 = n + n(n-1) = n + n^2 – n = n^2 √

p=3: n^3 = [n]_1 + 3 [n]_2 + 1 [n]_3


= n + 3n(n-1) + n(n-1)(n-2)


= n + 3n^2 – 3n + n^3 – 3n^2 + 2n = n^3 √

p=4: Different way to check? … Use difference table.

0   1   16   81   256

  1   15  65   175

14 50  110

       36  60

          24

n^4 = 0 (n choose 0) + 1 (n choose 1) + 14 (n choose 2) + 

36 (n choose 3) + 24 (n choose 4)

= 0 [n]_0 + 1 [n]_1 + 14/2 [n]_2 + 36/6 [n]_3 + 

24/24 [n]_4

= 0 [n]_0 + 1 [n]_1 + 7 [n]_2 + 6 [n]_3 + 1 [n]_4.

SKIP THIS PARAGRAPH:

If we have a polynomial expressed with respect to the falling factorial basis, we can express it with respect to the monomial basis via matrix multiplication using signed Stirling numbers of the first kind:

[n]_0 + 2[n]_1 + 3[n]_2 = 1 + 2n + 3n(n-1)

= 1 + 2n + 3n^2 – 3n = 1 – n + 3n^2

    [1  0  0]

[1 2 3] [0  1  0] = [1 –1 3] 

           [0 -1  1]

Likewise, if we have a polynomial expressed with respect to the monomial basis, we can express it with respect to the falling factorial basis via matrix multiplication using Stirling numbers of the second kind:

n^0 – n^1 + 3n^2 = [n]_0 – [n]_1 + 3([n]_2 + [n]_1)


= [n]_0 + 2[n]_1 + 3[n]_3

             [1  0  0]  

[1 –1 3] [0  1  0] = [1 2 3]

             [0  1  1] 

(Note that this implies that the two matrices are inverses of each other.)

There’s an entirely different, combinatorial approach to the Stirling numbers:

2nd kind: S(p,k) = the number of ways of dividing a set of p distinguishable objects into k non-empty subsets

1st kind: s(p,k) = the number of ways of dividing a set of p distinguishable objects into k non-empty circular permutations

E.g., S(4,2) = 3 + 4 = 7; s(4,2) = 3 + 4(2 = 11

To link the combinatorial definitions of the Stirling numbers with the algebraic definitions, we show that the combinatorially defined numbers satisfy the same initial conditions and recurrence relations as the algebraically defined numbers

First kind: 

Initial conditions: s(p,0)=0 for all p(1, s(p,p)=1 for all p(0.

Recurrence: s(p,k) = (p-1)s(p-1,k)+s(p-1,k-1) if 0<k<p.

Second kind:

Initial conditions: S(p,0)=0 for all p(1, S(p,p)=1 for all p(0.

Recurrence: S(p,k) = kS(p-1,k)+S(p-1,k-1) if 0<k<p.

Once we show that the combinatorially-defined Stirling numbers and the algebraically-defined Stirling numbers satisfy the same initial conditions and the same recurrence relations, the desired equality follows by induction. 

Until we’ve proved that the combinatorially-defined Stirling numbers equal the algebraically-defined Stirling numbers are one and the same, we don’t want to jump the gun by denoting them by the same symbols.  So we temporarily use s^# instead of s and S^* instead of S.

Discuss page 290: Here’s another way to compute S(4,2).  Instead of counting ways to partition {1,2,3,4} into two non-empty subsets, count the number of ways to put the elements of {1,2,3,4} into two distinguishable boxes, so that neither box is empty.  (Discuss this!)  E.g., call one box red and one box blue.  Think of the numbers in {1,2,3,4} as numbered balls.  Then the number of such assignments of the balls to the boxes is 2^4 – 2 = 16 – 2 = 14.  So the number of partitions of {1,2,3,4} into two non-empty subsets is 14/2 = 7.  This is a (very simple) case of inclusion-exclusion.

Can we do inclusion-exclusion to calculate S(4,2) directly?  Why or why not?

Discuss proofs of recurrence relations.

Discuss exercise 13 (page 319).

OMIT:

Mention pages 291-292.  Bell numbers and rhyme-schemes.
