We say that the sequence (a_0, a_1, a_2,...) satisfies a linear recurrence relation with constant coefficients if there is an m, and constants c_1, c_2, …, c_m, and some function g_n, such that for all n ( m,

(1)     a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... 

+ c_m a_{n-m} + g_n.

If c_m ≠ 0, we say that the recurrence relation has order m. If g_n = 0, we say the recurrence is homogeneous.

Assume c_m ≠ 0.

The homogeneous linear recurrence relation with constant coefficients of order m given by 

(2)     a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... 

   + c_m a_{n-m}

is said to have

        x^m - c_1 x^{m-1} - c_2 x^{m-2} - ... - c_m = 0

as its characteristic equation.  Roots of the characteristic

equation are called characteristic roots or characteristic values.

The sequence a_n = r^n (r neq 0) is a solution of the recurrence relation (2) iff r is a characteristic root.

Apply this to derive Binet’s formula for the Fibonacci numbers

Let’s apply these ideas to problem C of problem set #1:

“Now $f(n)$ counts the number of different perfect covers

of a 1-by-$n$ (not 2-by-$n$!) chessboard by colored tiles 

of three kinds: a red 1-by-1 tile, a blue 1-by-1 tile, and a green 1-by-2 tile.  (Get students to help.)

Questions on section 7.1?

Page 212: “We’re trying to prove (7.8), but Brualdi assumes that it’s true.  Doesn’t this make his reasoning circular?” … No; it doesn’t.  He’s doing a proof by induction.

“But I thought when you do induction, you assume it’s true for n-1 and then prove it’s true for n, instead of assuming that it’s true for n and proving that it’s true for n+1!” …  It makes no difference; the point is that if the assertion is true for any particular number, then the assertion is true for the next number.  It doesn’t matter whether you call the numbers n-1 and n or call them n and n+1.

Page 212: Can compute s_n another way (view the Fibonacci sequence as a sum of two geometric sequences, and sum them separately)

Discuss Theorem 7.2.1 (page 220).

Consider the homogeneous linear recurrence relation of order k:

h_n = a_1 h_{n-1} + a_2 h_{n-2} + … + a_k h_{n-k}.

The characteristic polynomial is 

x^n – a_1 x^{n-1} – a_2 x^{n-2} – … – a_k

and the characteristic equation is

x^n – a_1 x^{n-1} – a_2 x^{n-2} – … – a_k = 0.

If the characteristic equation has distinct roots q_1,…,q_k, then the sequences h_n = q_1^n, h_n = q_2^n, ..., h_n = q_k^n are all solutions (and are all linearly independent of one another), and the general solution is 

h_n = c_1 q_1^n + c_2 q_2^n + ... + c_k q_k^n.

Apply to h_n = –h_{n-2} with initial conditions h_0 = 1, h_1 = 0.  The characteristic equation is x^2 + 1 = 0, whose roots are i and –i (imaginary numbers!).  Writing h_n = c_1 i^n + c_2 (–i)^n and solving for c_1 and c_2, we get c_1 = c_2 = 1/2, so h_n = (i^n + (–i)^n)/2.

If the characteristic equation of a homogeneous linear recurrence has a repeated root q, then h_n = q^n and h_n = n q^n are both solutions.

Example: h_n = 2h_{n-1} – h_{n-2}.  The characteristic equation is x^2 – 2x + 1 = 0, with the double root 1.  So h_n = 1^n = 1 and h_n = n 1^n = n are both solutions, as is any linear combination of them: h_n = A (1) + B (n).  We recognize this as the general formula for an arithmetic progression.  This makes sense, since the original recurrence can be written as h_n – h_{n-1} = h_{n-1} – h_{n-2}, which is the defining property of an arithmetic progression (each increment is the same as the one before).

If the characteristic equation has a single root q(0 with multiplicity k, then the sequences h_n = q^n, h_n = n q^n, h_n = n^2 q^n, ..., h_n = n^{k-1} q^n are all solutions (and are all linearly independent of one another), and the general solution is 

h_n = c_1 q^n + c_2 n q^n + c_3 n^2 q^n + ... 

+ c_k n^{k-1} q^n.

Describe the fully general situation (mixes features of both extreme cases): Theorem 7.2.2 (page 227).

Questions? …

The non-homogeneous case (section 7.3):

h_n = a_1 h_{n-1} + … + a_k h_{n-k} + b_n.

The general solution to a non-homogeneous linear recurrence is equal to the sum of a particular solution (any will do) and the general solution to the associated homogeneous recurrence.

Example: h_n = 2h_{n-1}+1, h_0 = 0.

Values: 0, 1, 3, 7, 15, …

General solution to homogeneous recurrence: h_n = c 2^n.

Particular solution to non-homogeneous recurrence: h_n = 

–1.

The solution we want: h_n = c 2^n – 1, where c is chosen so that h_0 = 0: c=1, h_n = 2^n – 1.

