
Math 475, Problem Set #12: Answers

A. Chapter 8, problem 12, parts (b) and (d).

(b) S#(n, 2) = 2n − 2, since, from among the 2n ways of putting n
elements into 2 distinguishable boxes, exactly 2 of them result
in one of the boxes being empty. Hence S(n, 2) = 1

2!
S#(n, 2) =

1
2
(2n − 2) = 2n−1 − 1.

Alternative solution: Let 1, . . . , n denote the objects that are be-
ing put into the boxes. One we choose to put 1 into a particular
box (and for purposes of counting we can ignore the fact that we
have two choices since the two boxes are indistinguishable), we
have a two-way choice for where to put 2, a two-way choice for
where to put 3, etc.; in each case, we can either put the new num-
ber in the same box as 1 or in the other box. This would give
a total of 2n−1 possibilities (since there are n − 1 elements to be
assigned to the boxes after 1 has been put in a box), except for
the fact that we are required to leave no box empty. This will
happen if all n − 1 elements are assigned to be in the same box
as 1. Hence the number of permitted assignments is not 2n−1 but
2n−1 − 1.

(d) When we divide a set of size n into n − 2 non-empty subsets, we
must either (a) have a set of size 3 and all other sets of size 1, or
else (b) have two sets of size 2 and all other sets of size 1. Case

(a): There are
(

n
3

)
ways to choose the three special elements that

belong to the set of size 3. Case (b): There are
(

n
4

)
ways to choose

the four special elements that belong to the two sets of size 2, and
then there are 3 ways to divide those four elements into two sets
of size 2. So there are

(
n
3

)
+ 3

(
n
4

)
ways to divide a set of size n

into n− 2 non-empty subsets,

B. Find a formula for s(n, n− 2), valid for all n ≥ 3.

When we divide a set of size n into n − 2 non-empty circular permu-
tations (let’s call them “circles” for short), we must either (a) have a
circles of size 3 and all other circles of size 1, or else (b) have two circles
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of size 2 and all other circles of size 1. Case (a): There are
(

n
3

)
ways

to choose the three special elements that belong to the circle of size 3,
and 2 ways to arrange them in a circle. Case (b): There are

(
n
4

)
ways

to choose the four special elements that belong to the two circles of
size 2, and then there are 3 ways to divide those four elements into two
circles of size 2. (Given two elements, there is only one way to arrange

them in a circle of size 2.) So there are 2
(

n
3

)
+ 3

(
n
4

)
ways to divide a

set of size n into n− 2 circles.

C. Fix n ≥ 6.

(a) In how many ways can you partition a set with n (distinguishable)
elements into 3 distinguishable boxes, so that none of the boxes
contains fewer than 2 elements?

Call the boxes “red”, “white”, and “blue”. Let S be the set of all
ways to of assigning the elements to boxes, let A be the set of all
ways of assigning elements to boxes so that there are fewer than
2 boxes in the red box, let B be the set of all ways of assigning
elements to boxes so that there are fewer than 2 boxes in the white
box, and let C be the set of all ways of assigning elements to boxes
so that there are fewer than 2 boxes in the blue box. We want
to count the number of elements of S − (A ∩ B ∩ C). We use
the principle of inclusion-exclusion. |S| = 3n, since each of the n
elements can be assigned to any of the 3 boxes. |A| = 2n + n2n−1,
since we can either assign all n elements to the white and blues
boxes or assign one of the n elements to the red box and assign the
remaining n− 1 elements to the white and blues boxes. Ditto for
|B| and |C|. |A∩B| = 1n + n1n−1 + n1n−1 + n(n− 1)1n−2, where
the four terms correspond to the ways of having no elements in the
red and white boxes, one element in the red box and no elements
in the white box, no elements in the red box and one element in
the white box, or one element in the red box and one (different)
element in the white box. Ditto for |A ∩ C| and |B ∩ C|. Lastly,
|A ∩ B ∩ C| = 0, since (by the pigeonhole principle) there’s no
way to assign n ≥ 4 elements to three boxes without having some
box contain more than one element. So |S − (A ∩ B ∩ C)| =
3n − 3(2n + n2n−1) + 3(n2 + n + 1).
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(As a way of checking this, we can substitute n = 6, obtaining
the answer 90. We can compute this a different way: It’s just like
the problem of assigning six different students to three different
classrooms. The number of such assignments is the multinomial
coefficients

(
6

2,2,2

)
= 6!

2!2!2!
= 90.)

(b) In how many ways can you partition a set with n (distinguishable)
elements into into 3 indistinguishable boxes, so that none of the
boxes contains fewer than 2 elements?

Let a be the answer to part (a), and b be the answer to part
(b). Each assignment of the elements to 3 indistinguishable boxes
gives rise to 3! = 6 different assignments of the elements to 3
distinguishable boxes, since there are 3! ways to paint the three
boxes red, white and blue. Therefore a = 6b. Hence b = a/6 =
(3n − 3(2n + n2n−1) + 3(n2 + n + 1))/6.

D. For each k ≥ 0, let σk(x) =
∑∞

n=k S(n, k)xn, the generating function
for the kth column in the table of Stirling numbers of the second kind.
Thus for instance σ0(x) is the power series 1 + 0x + 0x2 + 0x3 + . . .,
also known as the constant 1.

(a) Show that σ1(x) = x/(1− x).

We showed above that S(n, 1) = 1 for all n ≥ 1, so σ1(x) =
x + x2 + x3 + . . . = x/(1− x).

(b) Show that σ2(x) = x2/(1− x)(1− 2x).

We showed above that S(n, 2) = 2n−1−1 for all n ≥ 2, so σ2(x) =
x2+3x3+7x4+15x5+ . . ., whence (1−2x)σ2(x) = x2+(3−2)x3+
(7−6)x4 +(15−14)x5 + . . . = x2 +x3 +x4 +x5 + . . . = x2/(1−x),
so σ2(x) = x2/(1− x)(1− 2x).

(c) Give a general formula (valid for all k ≥ 1) expressing σk(x) as
a rational function of x. (Hint: Multiply the recurrence relation
S(n, k) = kS(n − 1, k) + S(n − 1, k − 1) by xn and sum over all
n ≥ k; then express the resulting equation in terms of σk and σk−1.
This lets you express σk in terms of σk−1.)

Following the hint, we get∑
n≥k

S(n, k)xn = k
∑
n≥k

S(n− 1, k)xn +
∑
n≥k

S(n− 1, k − 1)xn.

3



The left-hand side is just σk(x). The first term on the right-
hand side can be re-written as k

∑
n≥k+1 S(n−1, k)xn (since S(k−

1, k) = 0) and then re-indexed as k
∑

n≥k S(n, k)xn+1 = kxσk(x).
The second term on the right-hand side can be re-indexed as∑

n≥k−1 S(n, k − 1)xn+1 = xσk−1(x). Thus we have

σk(x) = kxσk(x) + xσk−1(x).

Re-arranging, we get (1−kx)σk(x) = xσk−1(x), which gives σk(x) =
σk−1(x) x

1−kx
. Hence, starting from σ0(x) = 1, we get σ1(x) =

σ0(x) x
1−x

= x
1−x

, σ2(x) = σ1(x) x
1−2x

= x
1−x

x
1−2x

= x2

(1−x)(1−2x)
,

σ3(x) = σ2(x) x
1−3x

= x
1−x

x
1−2x

x
1−3x

= x3

(1−x)(1−2x)(1−3x)
, etc.; the

general formula is

σk(x) =
xk

(1− x)(1− 2x) · · · (1− kx)
.

(Note that the formula S(n, k) = kS(n− 1, k) + S(n− 1, k− 1) is
indeed valid for n = k: it just says 1 = 0 + 1. Brualdi only proves
this for k ≤ n− 1, and not for the case where k and n are equal.
It’s a good thing that the formula holds for n = k, since this
equation got used in the preceding proof when we multiplied the
equation by xk before adding it to infinitely many other equations
of the same sort!)

(d) Use part (c) in the special case k = 3 to find a formula for S(p, 3).
(Hint: Do a partial fraction decomposition of (σ3(x))/x3 rather
than σ3(x).)

We can’t apply partial fractions right away, because the degree
of the numerator is not less than the degree of the denominator.
But for all n ≥ 3, the coefficient of xn in the formal power series
expansion of x3/(1− x)(1− 2x)(1− 3x) is equal to the coefficient
of xn−3 in the formal power series expansion of 1/(1 − x)(1 −
2x)(1 − 3x), and this rational function of x can be decomposed
by partial fractions: 1/(1 − x)(1 − 2x)(1 − 3x) = A/(1 − x) +
B/(1 − 2x) + C/(1 − 3x). Multiplying both sides by (1 − x)(1 −
2x)(1−3x) and equating the the quadratic polynomials that occur
on both sides, we get three linear equations, which we solve to

4



obtain A = 1/2, B = −4, C = 9/2. So the coefficient of xn in
1/(1 − x)(1 − 2x)(1 − 3x) is (1/2)(1)n + (−4)(2)n + (−9/2)(3)n,
and S(n, 3) = the coefficient of xn in x3/(1−x)(1−2x)(1−3x) =
the coefficient of xn−3 in 1/(1−x)(1−2x)(1−3x) = (1/2)(1)n−3 +
(−4)(2)n−3+(9/2)(3)n−3 = 1/2+(−4)/82n+(9/2)/27(3)n = 1/2−
(1/2)2n + (1/6)3n. Note that this agrees with the formula we
derived in class using inclusion-exclusion.

E. (a) Find a linear recurrence relation satisfied by the sequence of num-
bers S(1, 3), S(2, 3), S(3, 3), ... (Hint: Use the generating func-
tion (σ3(x))/x3 you computed above, expressed as a rational func-
tion of x, and derive the recurrence relation from the form of the
denominator.)

Since the denominator of 1/(1− x)(1− 2x)(1− 3x) is the degree-
3 polynomial (1 − x)(1 − 2x)(1 − 3x), and the numerator is the
constant 1 (a polynomial of degree less than 3), the coefficients
in the formal power series expansion of 1/(1 − x)(1 − 2x)(1 −
3x) satisfy the recurrence whose characteristic polynomial is (x−
1)(x−2)(x−3) = x3−6x2+11x2−6; that is, S(n, 3)−6S(n−1, 3)+
11S(n−2, 3)−6S(n−3, 3) = 0 as long as n > 3. (Recall that S(0,3)
is the value that doesn’t fit the same pattern as the subsequent
terms, so we must avoid the situation where n, n−1, n−2, or n−3
vanishes; that is, we need n > 3.) Thus we obtain the recurrence
relation S(n, 3) = 6S(n−1, 3)−11S(n−2, 3)+6S(n−3, 3), valid
for all n > 3.

(b) Use this to compute S(8, 3) from earlier terms.

Using the initial conditions S(1, 3) = S(2, 3) = 0 and S(3, 3) = 1,
we successively derive S(4, 3) = 6(1)− 11(0) + 6(0) = 6, S(5, 3) =
6(6) − 11(1) + 6(0) = 25, S(6, 3) = 6(25) − 11(6) + 6(1) = 90,
S(7, 3) = 6(90) − 11(25) + 6(6) = 301, and S(8, 3) = 6(301) −
11(90) + 6(25) = 966.

(c) Compare this with the value of S(8, 3) obtained by using the re-
currence relation S(p, k) = S(p− 1, k − 1) + kS(p− 1, k).

Using values in the table in Brualdi, we derive S(7, 3) = S(6, 2) +
3S(6, 3) = 31 + 3(90) = 301 and S(8, 3) = S(7, 2) + 3S(7, 3) =
63 + 3(301) = 966.
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