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Introduction

In my title and in this talk, “quasiran-
dom” means quasirandom in the sense
introduced by Niederreiter et al. in the
late ’70s (aka “subrandom”), not quasi-
random in the sense introduced by Chung,
Graham, and Wilson in the late ’80s.

Informally, quasirandom means “like ran-
dom, but less lumpy”.
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Continuous quasirandomness:

Example: the van der Corput sequence

(1/2, 1/4, 3/4, 1/8, 5/8, . . .)

(whose nth term is a/2+b/4+c/8+ . . .
where n = a + 2b + 4c + . . .), used
as a substitute for a sequence of i.i.d.
random numbers chosen uniformly from
[0, 1].

Desideratum: Each subinterval of [0, 1]
gets hit about as often as any other (cf.
a truly random sequence whose histogram
wouldn’t be as flat).
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Discrete quasirandomness:

Example: the period-8 de Bruijn se-
quence ..., 0, 0, 0, 1, 1, 1, 0, 1, ... as a sub-
stitute for a sequence of i.i.d. random
bits.

Desideratum: Each short bit-pattern oc-
curs as often as any other.
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Common theme: reducing discrepancy
below what’s achieved by random pro-
cesses

Better title for this talk: “Minimizing
discrepancy: questions and applications”
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Estimating pi with derandomized
random walk

Folk theorem: The probability that a
random walker in Z2 starting at (0, 0)
will hit (1, 1) before returning to (0, 0)
is π/8.

This gives a really slow way to approxi-
mate π by doing repeated independent
rounds of random walk: estimate π/8
by the rational number K/N , where N
is the number of trials and K is the
number of successful trials (where suc-
cess means the walker hit (1, 1) before
returning to (0, 0)).

For most N ’s, the lowest error you can
hope for is on the order of 1/N .

Typically, you should expect errors on
the order of 1/

√
N .
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Derandomize: Whenever the walker leaves
a site 6= (1, 1), he always leaves in the
direction 90 degrees clockwise from the
direction he used the last time he left
that site.

This is the “rotor-router” mechanism
for derandomization; for a Java imple-
mentation, see
www.math.wisc.edu/∼propp/
rotor-router-1.0/

The exits from each site satisfy a low
discrepancy property: for any two neigh-
bors t, t′ of site s, the number of exits
from s to t and the number of exits from
s to t′ differ by at most 1 (cf. “by at
most

√
N on average” for random walk,

where N is the number of visits to s so
far).
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Question 1: How quickly does the
success-ratio KN/N approach π/8 as
N →∞?

Assessed difficulty: Hard

Partial results:

It’s known that KN/N approaches π/8
with error O(1/ log N).

It has been observed that for N ≤ 104,
the error never exceeds 2/N . (Recall
that for the worst N ’s, 1/2N is the
smallest error you can achieve with any
approximation K/N . In contrast, ran-
dom walk achieves O(1/

√
N).)

For over half of these 104 values of N ,
the derandomized walk gives the best
fraction with denominator N , that is,
the unique one that is closest to π/8.
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Using derandomized random walk
for aggregation in Z2

Internal diffusion-limited aggregation: Do
random walk from a fixed source until
you reach a site that you’ve never vis-
ited before; return immediately to the
source and continue walking from there.
Repeat ad infinitum.

In Z2, the set of sites visited by time
T , suitably rescaled, converges almost
surely to a perfect disk as T →∞.

The derandomized version of this ag-
gregation process makes 4-colored man-
dalas Ed Pegg dubbed “Propp circles”.

See Michael Kleber’s article “Goldbug
Variations” in the Winter 2005 issue of
The Mathematical Intelligencer.
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A conjecture both deep and pro-
found

Is whether the circle is round.
In a paper of Erdös
Written in Kurdish
A counterexample is found.

(Leo Moser)
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A conjecture a bit less profound
Is whether Propp circles are round.
The verdict is final
Since Yuval and Lionel
Came up with a two-sided bound1.

1 L. Levine and Y. Peres, Spherical asymp-
totics for the rotor-router model in Zd,
preprint, 2005 (and subsequent refine-
ments, not yet published).
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Question 2: How big are the radial
fluctuations?

Assessed difficulty: Extremely hard

Partial results: The radial fluctuations
appear to be on the order of log(R) or
even smaller (perhaps even O(1)), but
all Levine and Peres can show is that
they’re o(Rc) for every c > 1/2.

See www.math.wisc.edu/∼propp/
million.gif
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Beyond rotors

The first part of the talk has been about
the underappreciated virtues of periodic
sequences as surrogates for random se-
quences.

But now let’s impose more stringent re-
quirements that will rule out periodic
sequences.

An Erdös problem, dating back to 1927
or earlier:

Let f : N → {−1, +1} be an arbitrary
2-coloring of the natural numbers. Is it
true that the sup of

| n∑
i=1

f (id)|,

for n and d positive integers, is infinity?
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Turning it around:

Does there exist a 2-coloring f such that
the sums

n∑
i=1

f (id),

for n and d positive integers, are bounded
(in absolute value) by some B?

Still unsolved!
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A variant:

Does there exist a 2-coloring f such that
for every d > 0, the sums

n∑
i=1

f (c + id),

for n and c positive integers, are bounded
by some B(d)?

I was going to pose this as an open prob-
lem here, but David Feldman at UNH
showed that the answer is YES.

His example begins +1,−1, +1,−1, ...
and has generating function

1− x + x2 − x3... =
(1− x)

×(1 + x2 − x4 − x6)
×(1 + x8 + x16 − x24 − x32 − x40)
× ...
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So instead I’ll ask:

Question 3: Does there exist a 2-coloring
f such that for every d > 0, the sums

n∑
i=1

f (i)f (i + d),

for n a positive integer, are bounded by
some B(d)?

Assessed difficulty: Moderately easy

Partial results: None.
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The Ehrenfeucht-Mycielski sequence

0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, ...

Rule: to compute an+1 from a1a2 . . . an,
find the longest suffix amam+1 . . . an

that occurs earlier in the sequence; if
the most recent earlier occurrence is

am−d am+1−d . . . an−d ,

let an+1 be the complement of the bit
an−d+1.

Question 4: Does the density of 1’s
converge to 1/2?

Assessed difficulty: Moderately hard

Partial results: See work of Klaus Sut-
ner, sutner@cs.cmu.edu.
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Derandomized aggregation in the
Stern-Brocot tree

Background: If you arrange the dyadic
rationals in (0, 1) as vertices of a binary
tree rooted at 1/2, it’s natural to do a
random walk on this tree, where each
arc pointing away from the root (e.g.,
1/2 → 1/4, 1/2 → 3/4, etc.) has prob-
ability 1/2. This walk corresponds to
forming a random sum 1

2 ±
1
4 ±

1
8 ± . . .,

whose limiting distribution is Lebesgue
measure on (0, 1).

If you derandomize this walk with ro-
tors, and do rotor-router aggregation in
the binary tree, you pick up the dyadic
rationals in the order 1/2, 1/4, 3/4, 1/8
5/8, 3/8, 7/8, ... (the van der Corput se-
quence) which is very evenly spread.
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There’s a natural way to arrange all the
rationals in (0, 1) as vertices of a binary
directed tree, rooted at 1/2.

There’s a unique way to assign a prob-
ability to each arc so that the random
walk “goes to” Lebesgue measure on (0, 1).

You can derandomize this walk with ro-
tors. For one natural way of initializ-
ing the rotors, you pick up the ratio-
nals in the order 1/2, 1/3, 2/3, 1/4, 3/4,
1/5, 4/5, 2/5, 3/5, .... How evenly-spaced
is this sequence? Specifically:

Question 5: If we fix n and order the
first n terms as a1 < a2 < ... < an,
how big is

n∑
i=1

|ai − i/n|?

Assessed difficulty: Incredibly hard
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In particularly the assertion that
n∑

i=1
|ai − i/n|

is o(nc) for every c > 1/2 is probably
equivalent to the Riemann Hypothesis!
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