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May 1, 2012

These slides are on-line at http://jamespropp.org/bamc12.pdf
so there’s no need to take notes on anything you see here (only on
the things that I say that you don’t see!).
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The five lights puzzle

Puzzle: Five sites in a line are numbered 1 through 5 from left to
right, each is equipped with a light that can be green or red.
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The five lights puzzle

Puzzle: Five sites in a line are numbered 1 through 5 from left to
right, each is equipped with a light that can be green or red.
A bug is dropped on site 3 and repeatedly obeys the following rules:

◮ if the bug sees a green light, it turns the light red and moves
one step to the right;

◮ if the bug sees a red light, it turns the light green and moves
one step to the left.

Show that the bug must eventually leave the system (either by
leaving site 1 heading to the left, or by leaving site 5 heading to
the right), and give a simple rule for predicting which of the two
outcomes will happen.
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An example

What does the bug do if the initial state of the lights is GRGRG?

1 2 3 4 5
G R G R G
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An example

What does the bug do if the initial state of the lights is GRGRG?

1 2 3 4 5
G R G R G
G R R → R G
G R R ← G G
G R ← G G G
G ← G G G G
R → G G G G
R R → G G G
R R R → G G
R R R R → G
R R R R R →

The bug successively visits sites 3,4,3,2,1,2,3,4,5, exiting at the
right.
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No exit?

Could the bug stay circulate among sites 1,2,3,4,5 forever, never
escaping at the left or the right?

18 / 80



No exit?

Could the bug stay circulate among sites 1,2,3,4,5 forever, never
escaping at the left or the right?

If so, there must be some site that the bug visits infinitely often.
Let i be the leftmost site that the bug visits infinitely often.

19 / 80



No exit?

Could the bug stay circulate among sites 1,2,3,4,5 forever, never
escaping at the left or the right?

If so, there must be some site that the bug visits infinitely often.
Let i be the leftmost site that the bug visits infinitely often.

If the bug visits site i infinitely often, it must visit site i − 1
infinitely often as well (since half of the time when it leaves site i it
goes to site i − 1).

20 / 80



No exit?

Could the bug stay circulate among sites 1,2,3,4,5 forever, never
escaping at the left or the right?

If so, there must be some site that the bug visits infinitely often.
Let i be the leftmost site that the bug visits infinitely often.

If the bug visits site i infinitely often, it must visit site i − 1
infinitely often as well (since half of the time when it leaves site i it
goes to site i − 1).

But this contradicts our assumption that site i was the leftmost
site that is visited infinitely often.

21 / 80



No exit?

Could the bug stay circulate among sites 1,2,3,4,5 forever, never
escaping at the left or the right?

If so, there must be some site that the bug visits infinitely often.
Let i be the leftmost site that the bug visits infinitely often.

If the bug visits site i infinitely often, it must visit site i − 1
infinitely often as well (since half of the time when it leaves site i it
goes to site i − 1).

But this contradicts our assumption that site i was the leftmost
site that is visited infinitely often.

This contradiction proves that the bug must escape: either it will
go left from site 1, “arriving at site 0”, or it will go right from site
5, “arriving at site 6”.
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Left or right?
But which way will the bug escape?

23 / 80



Left or right?
But which way will the bug escape?
The trick to figuring this out is to notice that the the quantity

(number of green lights)

plus

(position of the bug)

is invariant:

24 / 80



Left or right?
But which way will the bug escape?
The trick to figuring this out is to notice that the the quantity

(number of green lights)

plus

(position of the bug)

is invariant:

If a green light turns red (and the bug takes a step to the right),
the number of green lights goes down by 1, but the position of the
bug goes up by 1.

25 / 80



Left or right?
But which way will the bug escape?
The trick to figuring this out is to notice that the the quantity

(number of green lights)

plus

(position of the bug)

is invariant:

If a green light turns red (and the bug takes a step to the right),
the number of green lights goes down by 1, but the position of the
bug goes up by 1.

If a red light turns green (and the bug takes a step to the left), the
number of green lights goes up by 1, but the position of the bug
goes down by 1.

26 / 80



Left or right?
But which way will the bug escape?
The trick to figuring this out is to notice that the the quantity

(number of green lights)

plus

(position of the bug)

is invariant:

If a green light turns red (and the bug takes a step to the right),
the number of green lights goes down by 1, but the position of the
bug goes up by 1.

If a red light turns green (and the bug takes a step to the left), the
number of green lights goes up by 1, but the position of the bug
goes down by 1.

Either way, the quantity defined above is invariant, until the bug
hits “site 0” or “site 6” (exiting at the left or right).
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Predicting the future

So, if the bug goes from 3 to 0 (that is, it leaves the system
heading left), then number of green lights must increase by 3;

and if the bug goes from 3 to 6 (that is, it leaves the system
heading right), then the number of green lights must decrease by 3.

But if the number of green lights at the start is 3 or greater, the
number of green lights can’t increase by 3 (because ...
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Predicting the future

So, if the bug goes from 3 to 0 (that is, it leaves the system
heading left), then number of green lights must increase by 3;

and if the bug goes from 3 to 6 (that is, it leaves the system
heading right), then the number of green lights must decrease by 3.

But if the number of green lights at the start is 3 or greater, the
number of green lights can’t increase by 3 (because ...
there are only 5 lights all told!), so ...
the bug can’t exit left, and the bug must therefore ...
exit right.
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Predicting the far future without knowing the near future

On the other hand, if the number of green lights at the start is 2 or
fewer, the number of green lights can’t decrease by 3 (because ...
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On the other hand, if the number of green lights at the start is 2 or
fewer, the number of green lights can’t decrease by 3 (because ...
you can’t have fewer than 0 green lights!), so ...
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exit left.

Either way, if we know the number of green lights in the starting
configuration, we know the bug’s destiny, even if we don’t know
the precise details of how it will get there.
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Predicting the far future without knowing the near future

On the other hand, if the number of green lights at the start is 2 or
fewer, the number of green lights can’t decrease by 3 (because ...
you can’t have fewer than 0 green lights!), so ...
the bug can’t exit right, and the bug must therefore ...
exit left.

Either way, if we know the number of green lights in the starting
configuration, we know the bug’s destiny, even if we don’t know
the precise details of how it will get there.

Conclusion: The bug must exit to the right if the green lights
outnumber the red lights, and to the left if the red lights
outnumber the green lights.
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Bug after bug after bug

Suppose that, after the bug has exited the system, we add a
second bug to the system; on what side will it exit? ...
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Bug after bug after bug

Suppose that, after the bug has exited the system, we add a
second bug to the system; on what side will it exit? ...

It will exit the system on the opposite side. (If the first bug exited
left, the second will exit right; if the first bug exited right, the
second will exit left.)

If you add a third bug to the system, it will do the opposite of
what the second bug did, that is, it will do the same as what the
first bug did.
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Bug after bug after bug

Suppose that, after the bug has exited the system, we add a
second bug to the system; on what side will it exit? ...

It will exit the system on the opposite side. (If the first bug exited
left, the second will exit right; if the first bug exited right, the
second will exit left.)

If you add a third bug to the system, it will do the opposite of
what the second bug did, that is, it will do the same as what the
first bug did.

If you add lots of bugs to the system, one at a time, half of them
will exit the system to the left and half will exit to the right.
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More sites, more lights
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until it arrives at either site 0 or site n.
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More sites, more lights

Generalize!

Suppose we have sites 0, 1, 2, . . . , n − 1, n, with lights at sites
1, 2, . . . , n − 1.

We start a bug at site k and let it follow the same rules as before
until it arrives at either site 0 or site n.
Then we start a second bug at site k and let it follow the same
rules until it arrives at either site 0 or site n.
Etc.

“Homework”: Show that out of any n successive bugs that enter
the system, k will end up at site n and n − k will end up at site 0.
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But...

“What does any of this have to do with probability?”
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The gambler’s ruin problem

A gambler enters a casino with k dollars.

She makes a sequence of 1 dollar fair bets, so that on any given
bet she has

◮ a probability of 1/2 of gaining a dollar

◮ and a probability of 1/2 of losing a dollar.

If she reaches her goal of n dollars, she leaves the casino happy;
if she goes broke (ending up with 0 dollars), she leaves the casino
unhappy.

It can be shown that the probability that she’ll achieve her goal is
k/n.
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The gambler and the drunkard

The rising and falling fortunes of the gambler resemble the aimless
steps of a drunkard.

Imagine an east-west street with buildings numbered 0 through n;
building 0 (at the west end) is a police station, building n (at the
east end) is a hotel, and building k is a bar.

A hotel-guest who has gone to the bar and gotten drunk leaves the
bar and starts to wander.

◮ If he is in front of his hotel, the doorman will guide him inside;

◮ if he is in front of the police station, an officer will guide him
to a cell;

◮ and if he is anywhere else, he makes a random choice of
whether to head eastward or westward.
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The drunkard’s chance of getting to his hotel

It can be shown that the probability that the drunkard will reach
his hotel is k/n.

Indeed, mathematically, there’s no difference between the gambler
and the drunkard.

If we have M drunkards successively leaving the bar, on average we
expect (k/n)M of them to get to the hotel (and the rest of them
to end up in jail).

But this is just a statistical average, and our observations would be
subject to statistical fluctuations, on the order of

√
M.
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Drunkards vs. bugs

On the other hand, if we have M bugs successively leaving site k
and following the colored-lights rule, the number of bugs that reach
site n (rather than site 0) will also be close to (k/n)M; indeed, it
will differ from (k/n)M by at most n, regardless of how big M is.
Note that this difference, n, is a lot smaller than

√
M when M is

big.
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Randomness vs. quasirandomness

The drunkards make random decisions about where to go next; the
decisions follow no pattern that would allow an observer to predict
what will happen next.
The Law of Large Numbers says that with high probability,
drunkards arriving at building i proceed to building i − 1 about half
the time and proceed to building i + 1 about half the time.

The bugs make completely non-random decisions about where to
go next. The rule that the bugs follow ensure that bugs visiting
site i proceed to site i − 1 half the time and proceed to site i + 1
half the time.

The big lesson of quasirandom processes is that for many purposes,
what matters is the half-half split (or the two-thirds-one-third split,
or whatever it is), not where the split “comes from” (random
choices versus simple rules).
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More puzzles of this kind

Another puzzle of this kind is the Bugs on a Line problem. We’ll
work on this puzzle after the break.

Yet another is the Goldbug problem. We’ll work on this one too, if
time permits.

Like the five lights puzzle, these puzzles illustrate the way in which
“quasirandom walk” mimics properties of random walk.
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Rotor-routers

The building-blocks for quasirandom processes are called
rotor-routers.

A k-way rotor-router at a site is a light that cycles through some
fixed set of k colors, and sends each successive bug that visits the
site to a neighboring site that is determined solely by the color of
the light.

Machines built out of rotor-routers are deterministic : their
behavior does not involve any element of chance.

But they have properties similar to those of their random
counterparts.
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Two-dimensional walk: random routing vs. rotor-routing

If a walker in an infinite square grid starts at (0,0) and repeatedly
takes a random step to one of the four neighbors of its current
location, the chance that the walker will reach (1,1) without
returning to (0,0) can be shown to be π/8.

If you run rotor-router applet (designed and coded by U. Wisconsin
undergraduates Hal Canary and Yutai Wong) and set the
Graph/Mode selector to “2-D Walk”, you’ll see a rotor-router
counterpart of the random walk process.

It was shown by Holroyd and P. that, as n goes to infinity, the
proportion of the first n rotor-router walkers that reach (1,1)
without returning to (0,0) converges to π/8.

In fact, the observed convergence to π/8 is faster than we can
currently explain. (We can prove that the difference shrinks to 0
like (log n)/n, but empirically it looks more like constant/n.)
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Quasirandom and random blobs

Set the Graph/Mode selector to “2-D Aggregation” to see a
quasirandom gadget for growing blobs of bugs. When a bug arrives
at a vacant site, it stays there forever; when a bug arrives at an
occupied site, it uses a rotor at that site to tell it where to go next.

In the corresponding random growth process (called Internal
Diffusion-Limited Aggregation or “IDLA”), a bug that arrives at an
occupied site moves randomly to one of the neighboring site.
Lawler, Bramson, and Griffeath showed that over time, the shape
of the growing blob converges to a circle.

To see what the random growth process looks like, visit
http://www.wisdom.weizmann.ac.il/∼itsik/Rw/Simulation.html.
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Randomness vs. roundness

The quasirandom growth process grows blobs that empirically are
even rounder than the random growth process, but nobody has
proved this rigorously.

Lionel Levine and Yuval Peres proved in 2005 that the
quasirandom blobs really do become true circles in the limit.

http://jamespropp.org/million.gif shows what the quasirandom
blob looks like after the blob has grown to size one million. The
internal structures are still completely mysterious.
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Clever simulation

Tobias Friedrich and Lionel Levine devised a clever scheme for
finding out what the blob of size n is that doesn’t require directly
simulating all the moves that the bugs would follow.

Their method has allowed them to compute the rotor-router blob
of size one billion.

Friedrich’s webpage http://rotor-router.mpi-inf.mpg.de/

shows rotor-router blobs of various kinds and sizes, using a
Google-maps navigational interface.
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The future

There are many other examples of simple quasirandom processes
that exhibit strange patterns that we do not understand at all.

I expect it will take decades before rigorous mathematical theory
catches up with computer-assisted mathematical exploration.
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Back to some puzzles!

In the last hour, we’ll look at two rotor-router puzzles.

But first, let’s talk about the origins of the puzzles, in the theory
of biased 1-dimensional random walk.

In the first kind of random walk we’ll look at, a bug is more likely
to jump to the right than to the left.

In the second kind of random walk, the bug is equally likely to
jump either way, but it takes bigger steps when it moves to the left.
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Biased walk #1

A bug is placed at 1.

If the bug ever reaches 0, the game is over.

At each time step, the bug jumps 1 step to the left with probablity
1/3 and 1 step to the right with probability 2/3.

What is the chance that the bug ever reaches 0?
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Solution
Let p be the probability that a bug started at 1 ever reaches 0.

Let q be the probability that a bug started at 2 ever reaches 1.

Let r be the probability that a bug started at 2 ever reaches 0.

What are some relations among these three probabilities?
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the bug is)
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Solution
Let p be the probability that a bug started at 1 ever reaches 0.

Let q be the probability that a bug started at 2 ever reaches 1.

Let r be the probability that a bug started at 2 ever reaches 0.

What are some relations among these three probabilities?

q = p (because the rules the bug follows don’t depend on where
the bug is)

r = pq (because in order to get from 2 to 0, the bug has to get to
1 first)

p = (1/3)(1) + (2/3)(r) (start a bug at 1 and look at where the
bug is after its first jump)
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Solution
Let p be the probability that a bug started at 1 ever reaches 0.

Let q be the probability that a bug started at 2 ever reaches 1.

Let r be the probability that a bug started at 2 ever reaches 0.

What are some relations among these three probabilities?

q = p (because the rules the bug follows don’t depend on where
the bug is)

r = pq (because in order to get from 2 to 0, the bug has to get to
1 first)

p = (1/3)(1) + (2/3)(r) (start a bug at 1 and look at where the
bug is after its first jump)

So p = (1/3)(1) + (2/3)p2, which has two roots: p = 1 and
p = 1/2. It can be shown that the root p = 1 is extraneous, and
that the correct answer is 1/2.
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The Bugs on a Line puzzle

Each positive integer on the number line is equipped with a green,
yellow or red light. A bug is dropped on 1 and obeys the following
rules at all times: if it sees a green light, it turns the light yellow
and moves one step to the right; if it sees a yellow light, it turns
the light red and moves one step to the right; if it sees a red light,
it turns the light green and moves one step to the left.

Eventually the bug will fall off the line to the left, or run out to
infinity on the right. A second bug is then dropped on 1, then a
third.

Assume that the lights are not initially all green or all red.

Prove that if the first bug falls off to the left, the second will
march off to infinity on the right, and vice versa.
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Trick

Think of a green light as the digit 0, red as the digit 1, and yellow
as the “digit” 1/2. The configuration of lights can then be
thought of as a number between 0 and 1 written out in binary,

x = .x1x2x3 . . .

where, numerically,

x = x1 ·
(

1/2)1 + x2 ·
(

1/2)2 + · · · .

This is the “value” of the lights.

Think of the bug itself as having value (1/2)i when it is in position
i .

Then the value of the lights plus the value of the bug is invariant,
that is, it does not change as the bug moves.
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The upshot
When the bug you add at 1 exits at 0, the net change in the value
of the lights is −1/2.

When the bug you add at 1 wanders off to infinity, the net change
in the value of the lights is +1/2.

But the total value of the lights must always be between
.000 · · · = 0 and .111 · · · = 1.

Moreover, the initial value of the system can’t be 0 or 1, because
the lights aren’t all 0’s or all 1’s.

So we can’t have both bugs exit at 0 (because the net change in
the value of the lights can’t be −1), and we can’t have both bugs
wander off to infinity (because the net change in the value of the
lights can’t be +1).

So the bugs must have opposite destinies.
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Biased walk #2

A bug is placed at 1.

If the bug ever reaches 0 or −1, the game is over.

At each time step, the bug jumps 2 steps to the left with
probablity 1/2 and 1 step to the right with probability 1/2.

It can be shown that the bug is certain (probability 1) of eventually
reaching either 0 or −1.

What is the chance that the bug ever reaches −1?
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Solution
Let p be the probability that a bug started at 1 ever reaches −1.

Let q be the probability that a bug started at 2 ever reaches 0.

Let r be the probability that a bug started at 2 ever reaches −1.

What are some relations among these three probabilities?
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Solution
Let p be the probability that a bug started at 1 ever reaches −1.

Let q be the probability that a bug started at 2 ever reaches 0.

Let r be the probability that a bug started at 2 ever reaches −1.

What are some relations among these three probabilities?

q = p (same reason as before)
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Solution
Let p be the probability that a bug started at 1 ever reaches −1.

Let q be the probability that a bug started at 2 ever reaches 0.

Let r be the probability that a bug started at 2 ever reaches −1.

What are some relations among these three probabilities?

q = p (same reason as before)

r = p(1− q) (the bug can only get from 2 to −1 via 1)
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Solution
Let p be the probability that a bug started at 1 ever reaches −1.

Let q be the probability that a bug started at 2 ever reaches 0.

Let r be the probability that a bug started at 2 ever reaches −1.

What are some relations among these three probabilities?

q = p (same reason as before)

r = p(1− q) (the bug can only get from 2 to −1 via 1)

p = (1/2)(1) + (1/2)(r) (start a bug at 1 and look at where the
bug is after its first jump)

76 / 80



Solution
Let p be the probability that a bug started at 1 ever reaches −1.

Let q be the probability that a bug started at 2 ever reaches 0.

Let r be the probability that a bug started at 2 ever reaches −1.

What are some relations among these three probabilities?

q = p (same reason as before)

r = p(1− q) (the bug can only get from 2 to −1 via 1)

p = (1/2)(1) + (1/2)(r) (start a bug at 1 and look at where the
bug is after its first jump)

So p = (1/2)(1) + (1/2)p(1 − p), which has roots
p = (−1±

√
5)/2. The negative root is clearly extraneous, so the

correct answer is p = (−1 +
√

5)/2 = 0.618 . . . .

Note that 1− p = p2, so p/(1− p) = 1/p = the golden ratio.
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The Goldbug puzzle

Each positive integer on the number line is equipped with a blue or
yellow light. All lights are initially blue. A bug is dropped on 1 and
obeys the following rules at all times: if it sees a yellow light, it
turns the light blue and moves one step to the right; if it sees a
blue light, it turns the light yellow and moves TWO steps to the
left.

Eventually the bug will fall off the line to the left, landing at either
−1 or 0. A second bug is then dropped on 1, then a third, and so
on. Each successive bug that is added falls off the line to the left,
landing at either −1 or 0. (Prove this!)

Show that the number of bugs that land at −1, divided by the
number of bugs that land at 0, converges to
Φ = (1 +

√
5)/2 = 1.618..., the “golden ratio”.
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Trick

Once again, you construct an invariant; this is not built on base 1
(like Puzzle #1) or base 2 (like Puzzle #2), but on “base Φ” (or,
alternatively, “base Fibonacci”).

One fun way to see how Fibonacci numbers play a role is to assign
blue rotors the value 0 when they’re blue, and to assign yellow
rotors the respective values 1, 2, 3, 5, 8, . . . .

Give the bug the value 1.

Then, after the nth bug has passed through the system, the yellow
rotors have Fibonacci values that sum to n!

This way of assigning values to the rotors and the bug gives a way
to prove that each bug eventually lands at either −1 or 0.
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For more information

You can read more about the Bugs on a Line problem in Peter
Winkler’s book Mathematical Puzzles: A Connoissuers Collection.
(See the Bugs on a Line problem on page 82, with solution on
pages 91–93.)

You can read more about the Goldbug problem in Michael Kleber’s
article “Goldbug Variations”, published in the Winter 2005 issue of
The Mathematical Intelligencer and also available on the web at
http://arxiv.org/abs/math/0501497.

These slides are at http://jamespropp.org/bamc12.pdf.
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