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Some representative papers by RAB:

5. Permanent of the direct product of matrices, Pa-
cific J. Math. 16 (1966), pp. 471-482.

17. Common transversals and strong exchange sys-
tems. J. of Combinatorial Theory 8 (1970), pp.
307-329.

176. Vector majorization via positive definite ma-
trices, (with S. G. Hwang and S.-S. Pyo), Linear
Algebra Applics, 257 (1997), 105-120.

193. Maximal nests of subspaces, the matrix Bruhat
decomposition, and the Marriage Theorem, with an
application to graph coloring, Elec. J. Linear Alge-
bra, 9 (2002), 118-121.

46. The DAD theorem for arbitrary row sums, Proc.
Amer. Math. Soc. 45 (1974), pp. 189-194.

67. Matrices of 0’s and 1’s with total support. J.
Comb. Theory, (A) 28 (1980), pp. 249-256.
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Somenon-representative papers:

46. The DAD theorem forarbitrary row sums,
Proc. Amer. Math. Soc. 45 (1974), pp. 189-194.

148. Greedy Codes (with V. Pless), J. Combin.
Theory (A), 64 (1993), 10-30.

84. On minimal regular digraphs withgirth 4 (with
Li Qiao). Czech. Math. J. 33 (108) (1983), 439-
447.
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The article whose main point I’ll be illustrating in
this talk is

138. The symbiotic relationship of Combinatorics
and Matrix Theory, 43 MS pages, Linear Alg. and
its Applic., 162-164 (1992), 65-105

along with passages from two books: Introductory
Combinatorics (first published in 1977) and Com-
binatorial Matrix Theory (with H.J. Ryser, published
in 1991).
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The five perfect covers of a
2-by-4 chessboard by dominoes
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If f (n) denotes the number of different perfect cov-
ers of a a 2-by-n chessboard by dominoes (1-by-2
rectangles), then we have

f (1) = 1,

f (2) = 2,

and

f (n) = f (n−1)+ f (n−2) for all n≥ 3.

Hence the sequence

f (1), f (2), f (3), f (4), f (5), f (6), . . .

is the Fibonacci sequence

1,2,3,5,8,13, . . .
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Re-indexing the recurrence relation as

f (n+2) = f (n+1)+ f (n)

and rewriting it as

f (n) = f (n+2)− f (n−1)

we see that there is a unique natural way of extend-
ing the sequence backwards:

. . . ,5,−3,2,−1,1,0,1,1,2,3,5,8,13, . . .

These extrapolated terms are just the ordinary Fi-
bonacci numbers, up to sign (this is easy to prove
by induction).

If you think of the 2-by-0 board as the empty board,
then it makes sense thatf (0) = 1, but it’s hard to
see what to make off (−1), f (−2), etc.
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Something similar happens if we defineg(n) as the
number of different perfect covers of a 3-by-nchess-
board by dominoes, and extend the sequence back-
wards by making use of the recurrence relation

g(n) = 4g(n−2)−g(n−4)

in reverse:

. . . ,41,0,11,0,3,0,1,0,1,0,3,0,11,0,41,0,153, . . .

This phenomenon (calledcombinatorial reciprocity)
also holds for perfect covers of am-by-n board, for
any fixed value ofm.

What’s going on?

9



The extrapolated quantities

. . . , f (−3), f (−2), f (−1)

. . . ,g(−3),g(−2),g(−1)

etc., some of which are negative, are actually “count-
ing” something (up to sign)!

To see what they’re counting,

USE LINEAR ALGEBRA

and

ADD MORE VARIABLES.
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L INEAR ALGEBRA:

The Fibonacci number 5 is equal to the upper-left
entry of the two-by-two matrix given by the matrix
product

(

1 1
1 0

)(

1 1
1 0

)(

1 1
1 0

)(

1 1
1 0

)

=

(

5 3
3 2

)

.
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MORE VARIABLES:

The upper-left entry of the two-by-two matrix

(

a1 b1

c1 0

)(

a2 b2

c2 0

)(

a3 b3

c3 0

)(

a4 b4

c4 0

)

is

b1c2b3c4+b1c2a3a4+a1a2b3c4+a1a2a3a4+a1b2c3a4,

a polynomial with five terms whose coefficients are
all equal to 1.

(Check what happens when all variables are set equal
to 1.)

These terms can be put into one-to-one correspon-
dence with the five perfect covers of the 2-by-4
board.
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More generally, if we put

M(n) =

(

an bn

cn 0

)

then the upper-left entry of the matrix product

P(n) = M(1)M(2)M(3) · · ·M(n)

is a polynomial whose coefficients are all equal to
1.

Setting all the variablesa1,b1, . . . ,cn in this polyno-
mial equal to 1 yields the Fibonacci numberf (n).

The terms of this polynomial (of which there are
f (n)) can be put into one-to-one correspondence
with the f (n) perfect covers of the 2-by-n board in
a systematic way.
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Two points of view:

1. The objects we care about are the (perfect domino)
covers of a 2-by-n board, and each monomial of de-
green encodes one such cover. We view the poly-
nomial as the “generating function” for the set of
covers.

2. The objects we care about are the monomials
themselves, and the perfect domino covers are merely
pictorial representations of them. Only certain mono-
mials are “legal” (or “grammatical”). The grammar
can be expressed in purely algebraic terms, but the
grammar is easier to think about in terms of pic-
tures (namely domino covers).
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Recall that we defined

P(n) = M(1)M(2)M(3) · · ·M(n−1)M(n)

for all n ≥ 1. It’s clear how to defineP(n) for all
n < 1: take the relationP(n) = P(n−1)M(n), re-
index it asP(n+1) = P(n)M(n+1), and rewrite it
asP(n) = P(n+1)M(n+1)−1.

P(3) = M(1)M(2)M(3)

P(2) = M(1)M(2)

P(1) = M(1)

P(0) = I
P(−1) = M(0)−1

P(−2) = M(0)−1M(−1)−1

P(−3) = M(0)−1M(−1)−1M(−2)−1

...
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It turns out that each of the matricesP(−1), P(−2),
P(−3), . . . defined in this way is a matrix whose
entires areLaurent polynomials.

(A Laurent monomialis some coefficient times a
product of finitely many variables each raised to
some (positive or negative) integer power, such as
5x1y−2. A Laurent polynomialis a sum of Laurent
monomials.)

E.g., the upper-left entry ofP(−4) is

c0b−1
−1c−1

−2b−1
−3 + c0a−1b−1

−1c−1
−1a−2b−1

−2c−1
−2b−1

−3

(a 2-term Laurent polynomial in which each coef-
ficient is+1) and the upper-left entry ofP(−5) is
a 3-term Laurent polynomial in which each coeffi-
cient is−1.
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When n is negative, all the coefficients inP(−n)
are equal to(−1)n.

Hence, setting all variables equal to 1, we see that
for n < 0, f (n) equals the number of monomials in
the upper-left corner ofP(n), with a plus-sign ifn
is even and a minus-sign ifn is odd.

For a more satisfying combinatorial interpretation
of f (n) with n < 0, interpret those monomials pic-
torially, in analogy with what works forn positive.

The big difference is that exponents can now be−1
as well as 0 or 1, so the interpretation via pictures
initially seems more complicated.

Surprise: we get domino covers again, but with a
different encoding!
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Main result for rectangular boards:

Fix m≥ 1, and leth(n) denote the number of per-
fect domino covers of am-by-n board (n≥ 1).

The numbersh(n) satisfy a linear recurrence rela-
tion with constant coefficients, and so may be ex-
trapolated in a unique natural fashion to non-positive
values ofn.

These extrapolated values satisfy the reciprocity re-
lation

h(−2−n) = εm,nh(n)

whereεm,n =−1 if m≡ 2 (mod 4) andn is odd, and
εm,n = +1 otherwise.

See www.combinatorics.org/Volume 8/
Abstracts/v8i1r18.html
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Why is h(−n) equal to±h(n−2) instead of±h(n)?

David Speyer used the transfer matrix method to
prove a more general result that explains this:

Fix m. Let A∗ (resp.B∗) be the set consisting of the
m leftmost (resp. rightmost) squares in anm-by-n
rectangle. For anyA ⊆ A∗ andB ⊆ B∗, let hA,B(n)
be the number of partial domino covers of the rect-
angle that cover every square in them-by-n board
except the squares inA∪B (well-defined combina-
torially whenn≥ 2, and defined for all other inte-
gersn by extrapolation). Then

hA,B(−n) = ±hB∗\B,A∗\A(n).

In particular, withA = B = the empty setφ ,

hφ ,φ(−n) = ±hB∗ ,A∗(n)

= ±hφ ,φ(n−2).
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Does this approach only work for rectangular
boards?

It works for lots of boards, including boards in higher
dimensions (e.g.,k-by-m-by-nboards, withk,mfixed
andn varying, covered by 1-by-1-by-2 bricks).

Some work has also been done on other two-dimen-
sional surfaces (including M̈obius strips and Klein
bottles; seecond-mat/0110035 by Lu and Wu).

A perfect cover of a 2-by-3
Möbius strip by dominoes

In every case that’s been tried, there seems to be a
reciprocity phenomenon.

(The projective plane hasn’t been tried yet.)
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Does this approach require that the tiles be domi-
noes, or more generally “diform tiles” (unions of
two adjacent cells)?

Other tiles can be used (though reciprocity results
do not always apply; the phenomenon is somewhat
sensitive to the tile-set chosen).

For example, if the region to be tiled is a rectangle
and the allowed tiles are dominoes and monomi-
noes (1-by-1 squares), then a version of reciprocity
still applies. One can interpret these results via
signed enumeration, but now signs can interfere de-
structively as well as constructively.

Seemath.CO/0304359 by Anzalone, Baldwin,
Bronshtein, and Petersen.
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Summary

Combinatorics

Matrix Theory
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Concluding testimonial

rab (Heb.), noun: teacher (lit. “great one”).

RAB is both!
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